Suppr超能文献

激光粉末床熔融铺粉过程在线监测装置的研究

Research on an Online Monitoring Device for the Powder Laying Process of Laser Powder Bed Fusion.

作者信息

Wei Bin, Liu Jiaqi, Li Jie, Zhao Zigeng, Liu Yang, Yang Guang, Liu Lijian, Chang Hongjie

机构信息

College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China.

Shijiazhuang Information Engineering Vocational College, Shijiazhuang 050000, China.

出版信息

Micromachines (Basel). 2024 Jan 3;15(1):97. doi: 10.3390/mi15010097.

Abstract

Improving the quality of metal additive manufacturing parts requires online monitoring of the powder bed laying procedure during laser powder bed fusion production. In this article, a visual online monitoring tool for flaws in the powder laying process is examined, and machine vision technology is applied to LPBF manufacture. A multiscale improvement and model channel pruning optimization method based on convolutional neural networks is proposed, which makes up for the deficiencies of the defect recognition method of small-scale powder laying, reduces the redundant parameters of the model, and enhances the processing speed of the model under the premise of guaranteeing the accuracy of the model. Finally, we developed an LPBF manufacturing process laying powder defect recognition algorithm. Test experiments show the performance of the method: the minimum size of the detected defects is 0.54 mm, the accuracy rate of the feedback results is 98.63%, and the single-layer laying powder detection time is 3.516 s, which can realize the effective detection and control of common laying powder defects in the additive manufacturing process, avoids the breakage of the scraper, and ensures the safe operation of the LPBF equipment.

摘要

提高金属增材制造零件的质量需要在激光粉末床熔融生产过程中对粉末床铺设过程进行在线监测。本文研究了一种用于粉末铺设过程中缺陷的视觉在线监测工具,并将机器视觉技术应用于激光粉末床熔融制造。提出了一种基于卷积神经网络的多尺度改进和模型通道剪枝优化方法,弥补了小规模粉末铺设缺陷识别方法的不足,减少了模型的冗余参数,并在保证模型精度的前提下提高了模型的处理速度。最后,开发了一种激光粉末床熔融制造过程铺设粉末缺陷识别算法。测试实验表明了该方法的性能:检测到的缺陷最小尺寸为0.54毫米,反馈结果的准确率为98.63%,单层铺设粉末检测时间为3.516秒,能够实现对增材制造过程中常见铺设粉末缺陷的有效检测和控制,避免刮刀破损,确保激光粉末床熔融设备的安全运行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2f6/10820394/f311f0707ba1/micromachines-15-00097-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验