文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Zinc phthalocyanine loaded- antibody functionalized nanoparticles enhance photodynamic therapy in monolayer (2-D) and multicellular tumour spheroid (3-D) cell cultures.

作者信息

Simelane Nokuphila Winifred Nompumelelo, Abrahamse Heidi

机构信息

Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.

出版信息

Front Mol Biosci. 2024 Jan 8;10:1340212. doi: 10.3389/fmolb.2023.1340212. eCollection 2023.


DOI:10.3389/fmolb.2023.1340212
PMID:38259685
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10801020/
Abstract

In conventional photodynamic therapy (PDT), effective delivery of photosensitizers (PS) to cancer cells can be challenging, prompting the exploration of active targeting as a promising strategy to enhance PS delivery. Typically, two-dimensional (2-D) monolayer cell culture models are used for investigating targeted photodynamic therapy. However, despite their ease of use, these cell culture models come with certain limitations due to their structural simplicity when compared to three-dimensional (3-D) cell culture models such as multicellular tumour spheroids (MCTSs). In this study, we prepared gold nanoparticles (AuNPs) that were functionalized with antibodies and loaded with tetra sulphonated zinc phthalocyanine (ZnPcS). Characterization techniques including transmission electron microscopy (TEM) was used to determine the size and morphology of the prepared nanoconjugates. We also conducted a comparative investigation to assess the photodynamic effects of ZnPcS alone and/or conjugated onto the bioactively functionalized nanodelivery system in colorectal Caco-2 cells cultured in both 2-D monolayers and 3-D MCTSs. TEM micrographs revealed small, well distributed, and spherical shaped nanoparticles. Our results demonstrated that biofunctionalized nanoparticle mediated PDT significantly inhibited cell proliferation and induced apoptosis in Caco-2 cancer monolayers and, to a lesser extent, in Caco-2 MCTSs. Live/dead assays further elucidated the impact of actively targeted nanoparticle-photosensitizer nanoconstruct, revealing enhanced cytotoxicity in 2-D cultures, with a notable increase in dead cells post-PDT. In 3-D spheroids, however, while the presence of targeted nanoparticle-photosensitizer system facilitated improved therapeutic outcomes, the live/dead results showed a higher number of viable cells after PDT treatment compared to their 2-D monolayer counterparts suggesting that MCTSs showed more resistance to PS drug as compared to 2-D monolayers. These findings suggest a high therapeutic potential of the multifunctional nanoparticle as a targeted photosensitizer delivery system in PDT of colorectal cancer. Furthermore, the choice of cell culture model influenced the response of cancer cells to PDT treatment, highlighting the feasibility of using MCTSs for targeted PS delivery to colorectal cancer cells.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/b273d6d128d4/fmolb-10-1340212-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/f4f5c26c6e26/fmolb-10-1340212-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/1435c5cce345/fmolb-10-1340212-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/26c126291bcd/fmolb-10-1340212-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/d6c2fe941ebe/fmolb-10-1340212-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/d4c8b19dcbdb/fmolb-10-1340212-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/194d26be50e3/fmolb-10-1340212-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/e1d352f4fb75/fmolb-10-1340212-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/72bedc437f15/fmolb-10-1340212-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/d86febc6edd7/fmolb-10-1340212-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/1df5f98e2ffa/fmolb-10-1340212-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/4a762a3839bb/fmolb-10-1340212-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/edb6bed68df4/fmolb-10-1340212-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/9a702cf610d8/fmolb-10-1340212-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/261b12b349ab/fmolb-10-1340212-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/b273d6d128d4/fmolb-10-1340212-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/f4f5c26c6e26/fmolb-10-1340212-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/1435c5cce345/fmolb-10-1340212-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/26c126291bcd/fmolb-10-1340212-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/d6c2fe941ebe/fmolb-10-1340212-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/d4c8b19dcbdb/fmolb-10-1340212-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/194d26be50e3/fmolb-10-1340212-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/e1d352f4fb75/fmolb-10-1340212-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/72bedc437f15/fmolb-10-1340212-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/d86febc6edd7/fmolb-10-1340212-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/1df5f98e2ffa/fmolb-10-1340212-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/4a762a3839bb/fmolb-10-1340212-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/edb6bed68df4/fmolb-10-1340212-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/9a702cf610d8/fmolb-10-1340212-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/261b12b349ab/fmolb-10-1340212-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5a/10801020/b273d6d128d4/fmolb-10-1340212-g015.jpg

相似文献

[1]
Zinc phthalocyanine loaded- antibody functionalized nanoparticles enhance photodynamic therapy in monolayer (2-D) and multicellular tumour spheroid (3-D) cell cultures.

Front Mol Biosci. 2024-1-8

[2]
Actively targeted photodynamic therapy in multicellular colorectal cancer spheroids via functionalised gold nanoparticles.

Artif Cells Nanomed Biotechnol. 2024-12

[3]
Targeted Nanoparticle Photodynamic Diagnosis and Therapy of Colorectal Cancer.

Int J Mol Sci. 2021-9-10

[4]
The Efficacy of Zinc Phthalocyanine Nanoconjugate on Melanoma Cells Grown as Three-Dimensional Multicellular Tumour Spheroids.

Pharmaceutics. 2023-8-31

[5]
Resistance of lung cancer cells grown as multicellular tumour spheroids to zinc sulfophthalocyanine photosensitization.

Int J Mol Sci. 2015-5-5

[6]
Modes of Cell Death Induced by Photodynamic Therapy Using Zinc Phthalocyanine in Lung Cancer Cells Grown as a Monolayer and Three-Dimensional Multicellular Spheroids.

Molecules. 2017-5-16

[7]
The phototoxic effect of a gold-antibody-based nanocarrier of phthalocyanine on melanoma monolayers and tumour spheroids.

RSC Adv. 2024-6-18

[8]
Mesenchymal stromal cells mediated delivery of photoactive nanoparticles inhibits osteosarcoma growth in vitro and in a murine in vivo ectopic model.

J Exp Clin Cancer Res. 2020-2-22

[9]
Targeted photodynamic therapy treatment of A375 metastatic melanoma cells.

Oncotarget. 2019-10-22

[10]
Natural photosensitizers in photodynamic therapy: In vitro activity against monolayers and spheroids of human colorectal adenocarcinoma SW480 cells.

Photodiagnosis Photodyn Ther. 2020-9

引用本文的文献

[1]
Phthalocyanine-nanoparticle conjugates for enhanced cancer photodynamic therapy.

RSC Adv. 2025-8-21

[2]
2D and 3D in vitro photodynamic activities of tetra-substituted symmetric water-soluble cationic zinc(II) phthalocyanines on cancer.

Sci Rep. 2025-7-11

本文引用的文献

[1]
The Efficacy of Zinc Phthalocyanine Nanoconjugate on Melanoma Cells Grown as Three-Dimensional Multicellular Tumour Spheroids.

Pharmaceutics. 2023-8-31

[2]
The Three-Dimensional In Vitro Cell Culture Models in the Study of Oral Cancer Immune Microenvironment.

Cancers (Basel). 2023-8-25

[3]
Nanoparticle-based drug delivery systems targeting cancer cell surfaces.

RSC Adv. 2023-7-17

[4]
Photodynamic Therapy: From the Basics to the Current Progress of -Heterocyclic-Bearing Dyes as Effective Photosensitizers.

Molecules. 2023-6-29

[5]
Current Strategies in Photodynamic Therapy (PDT) and Photodynamic Diagnostics (PDD) and the Future Potential of Nanotechnology in Cancer Treatment.

Pharmaceutics. 2023-6-12

[6]
D2B-Functionalized Gold Nanoparticles: Promising Vehicles for Targeted Drug Delivery to Prostate Cancer.

ACS Appl Bio Mater. 2023-2-20

[7]
Multifunctional Photoactive Nanomaterials for Photodynamic Therapy against Tumor: Recent Advancements and Perspectives.

Pharmaceutics. 2022-12-28

[8]
Nanotherapeutic Intervention in Photodynamic Therapy for Cancer.

ACS Omega. 2022-12-6

[9]
Photodynamic therapy improves the clinical efficacy of advanced colorectal cancer and recruits immune cells into the tumor immune microenvironment.

Front Immunol. 2022

[10]
Monoclonal antibody as a targeting mediator for nanoparticle targeted delivery system for lung cancer.

Drug Deliv. 2022-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索