Suppr超能文献

利用来自印度的第五次全国家庭健康调查(NFHS-5)数据,建立并展示五岁以下儿童人体测量失败的原子论和整体模型。

Developing and demonstrating an atomistic and holistic model of anthropometric failure among children under five years of age using the National Family Health Survey (NFHS)-5 data from India.

作者信息

Nandeep E R, Jaleel Abdul, Reddy P Bhaskar, Geddam J J Babu, Reddy Samarasimha N, Hemalatha Rajkumar

机构信息

Clinical Epidemiology Division, Indian Council of Medical Research (ICMR)-National Institute of Nutrition, Hyderabad, Telangana, India.

Public Health Nutrition Division, Indian Council of Medical Research (ICMR)-National Institute of Nutrition, Hyderabad, Telangana, India.

出版信息

Front Nutr. 2024 Jan 8;10:1280219. doi: 10.3389/fnut.2023.1280219. eCollection 2023.

Abstract

INTRODUCTION

Composite Index of Anthropometric Failure (CIAF) and its further modifications have not incorporated all the combinations of malnutrition. We propose a new model incorporating all the forms of malnutrition among children under five years of age. However, the current models might misclassify a growing child as malnourished. Our objective is to develop a comprehensive scoring system using the three anthropometric Z-scores [height-for-age (HAZ), weight-for-age (WAZ), and weight-for-height (WHZ) Z-scores] and demonstrate the proposed CIAF model using the National Family Health Survey-5 (NFHS-5) data from India.

METHODS

A new scoring system was developed using the WAZ, HAZ, and WHZ scores to determine the child's nutritional status. We also proposed a new CIAF model by including all possible categories of malnutrition and practically demonstrated it using the NFHS-5 dataset after applying the new scoring system. Under-five children with heights, weights, and ages available were included in the analysis. The groups of malnutrition are presented as weighted proportions before and after applying the new score to the proposed model.

RESULTS

Our final analysis included individual-level data of 198,802 children under five years of age (weighted = 195,197). After applying the new scoring system to the proposed model, the prevalence of stunting has reduced to 11.8% (95% CI 11.66-11.94) from 13.2% (95% CI 13.09-13.39) and wasting prevalence has reduced to 4.9% (95% CI 4.85-5.04) from 6.4% (95% CI 6.29-6.51). The most common forms of anthropometric failures among Indian children by using the newly developed CIAF model are: "Stunting and underweight" (30,127; 15.4%), Stunting only (23,035; 11.8%), and "wasting and underweight" (14,698; 7.5%). We found a new category called "Stunting, underweight, and overweight" (stunting = HAZ < -2SD, underweight = WAZ < -2SD, overweight = WHZ > +2SD). It constituted 0.1% (220 children) of the total sample.

CONCLUSION

When the new scoring system is applied to the proposed CIAF model, it captures all forms and combinations of malnutrition among under-five children without overlap and prevents misclassifying a growing child as malnourished. The newly identified category shows that stunting (HAZ < -2SD), overweight (WHZ > +2SD) and underweight (WAZ < -2SD) can co-exist in the same child.

摘要

引言

人体测量失败综合指数(CIAF)及其进一步改进并未涵盖营养不良的所有组合情况。我们提出了一种新模型,纳入了五岁以下儿童中所有形式的营养不良情况。然而,当前的模型可能会将正在成长的儿童误分类为营养不良。我们的目标是使用三个人体测量Z评分[年龄别身高(HAZ)、年龄别体重(WAZ)和身高别体重(WHZ)Z评分]开发一个综合评分系统,并利用来自印度的第五次全国家庭健康调查(NFHS - 5)数据展示所提出的CIAF模型。

方法

使用WAZ、HAZ和WHZ评分开发了一种新的评分系统,以确定儿童的营养状况。我们还通过纳入所有可能的营养不良类别提出了一种新的CIAF模型,并在应用新评分系统后,使用NFHS - 5数据集对其进行了实际验证。分析纳入了有身高、体重和年龄数据的五岁以下儿童。在将新分数应用于所提出的模型前后,营养不良组以加权比例呈现。

结果

我们的最终分析纳入了198,802名五岁以下儿童的个体水平数据(加权后为195,197名)。在所提出的模型中应用新评分系统后,发育迟缓的患病率从13.2%(95%置信区间13.09 - 13.39)降至11.8%(95%置信区间11.66 - 11.94),消瘦患病率从6.4%(95%置信区间6.29 - 6.51)降至4.9%(95%置信区间4.85 - 5.04)。使用新开发的CIAF模型,印度儿童中最常见的人体测量失败形式为:“发育迟缓和体重不足”(30,127例;15.4%)、仅发育迟缓(23,035例;11.8%)以及“消瘦和体重不足”(14,698例;7.5%)。我们发现了一个新类别,即“发育迟缓、体重不足和超重”(发育迟缓 = HAZ < -2SD,体重不足 = WAZ < -2SD,超重 = WHZ > +2SD)。它占总样本的0.1%(220名儿童)。

结论

当将新评分系统应用于所提出的CIAF模型时,它能够无重叠地捕捉五岁以下儿童中所有形式和组合的营养不良情况,并防止将正在成长的儿童误分类为营养不良。新确定的类别表明,发育迟缓(HAZ < -2SD)、超重(WHZ > +2SD)和体重不足(WAZ < -2SD)可能在同一儿童中同时存在。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8db9/10800737/4c285853ed53/fnut-10-1280219-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验