Suppr超能文献

具有绝对不应期的积分发放模型的涨落-响应关系

Fluctuation-response relations for integrate-and-fire models with an absolute refractory period.

作者信息

Puttkammer Friedrich, Lindner Benjamin

机构信息

Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115, Berlin, Germany.

Physics Department of Humboldt University Berlin, Newtonstr. 15, 12489, Berlin, Germany.

出版信息

Biol Cybern. 2024 Apr;118(1-2):7-19. doi: 10.1007/s00422-023-00982-9. Epub 2024 Jan 23.

Abstract

We study the problem of relating the spontaneous fluctuations of a stochastic integrate-and-fire (IF) model to the response of the instantaneous firing rate to time-dependent stimulation if the IF model is endowed with a non-vanishing refractory period and a finite (stereotypical) spike shape. This seemingly harmless addition to the model is shown to complicate the analysis put forward by Lindner Phys. Rev. Lett. (2022), i.e., the incorporation of the reset into the model equation, the Rice-like averaging of the stochastic differential equation, and the application of the Furutsu-Novikov theorem. We derive a still exact (although more complicated) fluctuation-response relation (FRR) for an IF model with refractory state and a white Gaussian background noise. We also briefly discuss an approximation for the case of a colored Gaussian noise and conclude with a summary and outlook on open problems.

摘要

我们研究了这样一个问题

如果随机积分发放(IF)模型具有非零不应期和有限(典型)的脉冲形状,那么该模型的自发涨落与瞬时发放率对随时间变化刺激的响应之间的关系。结果表明,在模型中看似无害地加入这些因素会使Lindner在《物理评论快报》(2022年)中提出的分析变得复杂,即把重置纳入模型方程、对随机微分方程进行类似莱斯的平均以及应用古津 - 诺维科夫定理。我们推导了一个具有不应期状态和白色高斯背景噪声的IF模型的仍然精确(尽管更复杂)的涨落 - 响应关系(FRR)。我们还简要讨论了有色高斯噪声情况下的一种近似,并以对开放问题的总结和展望作为结尾。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/041e/11068698/b978afaf1974/422_2023_982_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验