Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden.
J Phys Chem Lett. 2024 Feb 1;15(4):1079-1088. doi: 10.1021/acs.jpclett.4c00012. Epub 2024 Jan 23.
Computational chemistry is an important tool in numerous scientific disciplines, including drug discovery and structural biology. Coarse-grained models offer simple representations of molecular systems that enable simulations of large-scale systems. Because there has been an increase in the adoption of such models for simulations of biomolecular systems, critical evaluation is warranted. Here, the stability of the amyloid peptide and organic crystals is evaluated using the Martini 3 coarse-grained force field. The crystals change shape drastically during the simulations. Radial distribution functions show that the distance between backbone beads in β-sheets increases by ∼1 Å, breaking the crystals. The melting points of organic compounds are much too low in the Martini force field. This suggests that Martini 3 lacks the specific interactions needed to accurately simulate peptides or organic crystals without imposing artificial restraints. The problems may be exacerbated by the use of the 12-6 potential, suggesting that a softer potential could improve this model for crystal simulations.
计算化学是众多科学领域的重要工具,包括药物发现和结构生物学。粗粒模型提供了分子系统的简单表示,能够模拟大规模系统。由于越来越多地采用这种模型来模拟生物分子系统,因此有必要进行严格的评估。在这里,使用 Martini 3 粗粒力场评估了淀粉样肽和有机晶体的稳定性。在模拟过程中,晶体的形状发生了剧烈变化。径向分布函数表明,β-折叠中肽链后基团之间的距离增加了约 1 Å,从而破坏了晶体。在 Martini 力场中,有机化合物的熔点太低。这表明 Martini 3 缺乏准确模拟肽或有机晶体所需的特定相互作用,而无需施加人为限制。使用 12-6 势可能会使问题更加严重,这表明更软的势可以改进该晶体模拟模型。