Suppr超能文献

预测接受医疗补助的患者中不需要紧急护理的利用情况和成本。

Prediction of non emergent acute care utilization and cost among patients receiving Medicaid.

机构信息

Clinical Product Development, Waymark, San Francisco, CA, USA.

School of Social Policy and Practice, University of Pennsylvania, 3701 Locust Walk, Philadelphia, PA, 19104, USA.

出版信息

Sci Rep. 2024 Jan 23;14(1):824. doi: 10.1038/s41598-023-51114-z.

Abstract

Patients receiving Medicaid often experience social risk factors for poor health and limited access to primary care, leading to high utilization of emergency departments and hospitals (acute care) for non-emergent conditions. As programs proactively outreach Medicaid patients to offer primary care, they rely on risk models historically limited by poor-quality data. Following initiatives to improve data quality and collect data on social risk, we tested alternative widely-debated strategies to improve Medicaid risk models. Among a sample of 10 million patients receiving Medicaid from 26 states and Washington DC, the best-performing model tripled the probability of prospectively identifying at-risk patients versus a standard model (sensitivity 11.3% [95% CI 10.5, 12.1%] vs 3.4% [95% CI 3.0, 4.0%]), without increasing "false positives" that reduce efficiency of outreach (specificity 99.8% [95% CI 99.6, 99.9%] vs 99.5% [95% CI 99.4, 99.7%]), and with a ~ tenfold improved coefficient of determination when predicting costs (R: 0.195-0.412 among population subgroups vs 0.022-0.050). Our best-performing model also reversed the lower sensitivity of risk prediction for Black versus White patients, a bias present in the standard cost-based model. Our results demonstrate a modeling approach to substantially improve risk prediction performance and equity for patients receiving Medicaid.

摘要

接受医疗补助(Medicaid)的患者通常面临健康不良的社会风险因素和获得初级保健服务的限制,导致他们经常因非紧急情况而过度利用急诊部门和医院(急性护理)。随着这些项目主动接触医疗补助患者提供初级保健服务,他们依赖于历史上受数据质量差限制的风险模型。在提高数据质量和收集社会风险数据的举措之后,我们测试了改进医疗补助风险模型的替代广泛争议的策略。在来自 26 个州和华盛顿特区的 1000 万接受医疗补助的患者样本中,表现最佳的模型将有风险的患者的预测概率比标准模型增加了两倍(敏感度 11.3%[95%CI 10.5, 12.1%] vs 3.4%[95%CI 3.0, 4.0%]),而不会增加“假阳性”,从而降低外展效率(特异性 99.8%[95%CI 99.6, 99.9%] vs 99.5%[95%CI 99.4, 99.7%]),并且在预测成本时,决定系数提高了约十倍(在人群亚组中,R:0.195-0.412 与 0.022-0.050)。我们表现最佳的模型还扭转了黑人患者风险预测敏感度低于白人患者的情况,这是标准基于成本的模型中存在的偏差。我们的结果证明了一种建模方法,可以显著提高接受医疗补助的患者的风险预测性能和公平性。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验