Institute of Biochemistry, Graz University of Technology, Austria.
Institute of Organic Chemistry, Graz University of Technology, Austria.
FEBS J. 2024 Apr;291(7):1560-1574. doi: 10.1111/febs.17055. Epub 2024 Jan 24.
Flavin mononucleotide (FMN)-dependent ene-reductases constitute a large family of oxidoreductases that catalyze the enantiospecific reduction of carbon-carbon double bonds. The reducing equivalents required for substrate reduction are obtained from reduced nicotinamide by hydride transfer. Most ene-reductases significantly prefer, or exclusively accept, either NADPH or NADH. Despite their usefulness in biocatalytic applications, the structural determinants for cofactor preference remain elusive. We employed the NADPH-preferring 12-oxophytodienoic acid reductase 3 from Solanum lycopersicum (SlOPR3) as a model enzyme of the ene-reductase family and applied computational and structural methods to investigate the binding specificity of the reducing coenzymes. Initial docking results indicated that the arginine triad R283, R343, and R366 residing on and close to a critical loop at the active site (loop 6) are the main contributors to NADPH binding. In contrast, NADH binds unfavorably in the opposite direction toward the β-hairpin flap within a largely hydrophobic region. Notably, the crystal structures of SlOPR3 in complex with either NADPH or NADH corroborated these different binding modes. Molecular dynamics simulations confirmed NADH binding near the β-hairpin flap and provided structural explanations for the low binding affinity of NADH to SlOPR3. We postulate that cofactor specificity is determined by the arginine triad/loop 6 and the residue(s) controlling access to a hydrophobic cleft formed by the β-hairpin flap. Thus, NADPH preference depends on a properly positioned arginine triad, whereas granting access to the hydrophobic cleft at the β-hairpin flap favors NADH binding.
黄素单核苷酸(FMN)依赖性烯还原酶构成了一个庞大的氧化还原酶家族,催化碳-碳双键的对映选择性还原。用于底物还原的还原当量是通过氢化物转移从还原型烟酰胺获得的。大多数烯还原酶显著偏好或专门接受 NADPH 或 NADH。尽管它们在生物催化应用中很有用,但对于辅因子偏好的结构决定因素仍然难以捉摸。我们采用了来自番茄(Solanum lycopersicum)的 NADPH 偏好型 12-氧代-顺-2-十一碳烯酸还原酶 3(SlOPR3)作为烯还原酶家族的模型酶,并应用计算和结构方法研究了还原辅酶的结合特异性。初步对接结果表明,位于活性位点(loop6)上并靠近关键环的精氨酸三联体 R283、R343 和 R366 是 NADPH 结合的主要贡献者。相比之下,NADH 以不利的方式在β-发夹瓣内的 largely hydrophobic region 中结合,向相反的方向结合。值得注意的是,SlOPR3 与 NADPH 或 NADH 复合物的晶体结构证实了这些不同的结合模式。分子动力学模拟证实了 NADH 在β-发夹瓣附近的结合,并为 NADH 与 SlOPR3 结合亲和力低提供了结构解释。我们假设辅因子特异性取决于精氨酸三联体/loop6 和控制进入由β-发夹瓣形成的疏水性裂缝的残基。因此,NADPH 偏好取决于正确定位的精氨酸三联体,而赋予β-发夹瓣疏水性裂缝的访问权限则有利于 NADH 结合。