Suppr超能文献

转移性胃腺癌患者中哪些是原发肿瘤切除术的最佳候选者?一项基于人群的研究。

Who are optimal candidates for primary tumor resection in patients with metastatic gastric adenocarcinoma? A population-based study.

机构信息

Department of Respiratory and Critical Care Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.

Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.

出版信息

PLoS One. 2024 Jan 24;19(1):e0292895. doi: 10.1371/journal.pone.0292895. eCollection 2024.

Abstract

BACKGROUND

The research aimed to construct a novel predictive nomogram to identify specific metastatic gastric adenocarcinoma (mGAC) populations who could benefit from primary tumor resection (PTR).

METHOD

Patients with mGAC were included in the SEER database and divided into PTR and non-PTR groups. The Kaplan-Meier analysis, propensity score matching (PSM), least absolute shrink and selection operator (LASSO) regression, multivariable logistic regression, and multivariate Cox regression methods were then used. Finally, the prediction nomograms were built and tested.

RESULTS

3185 patients with mGAC were enrolled. Among the patients, 679 cases underwent PTR while the other 2506 patients didn't receive PTR. After PSM, the patients in the PTR group presented longer median overall survival (15.0 vs. 7.0 months, p < 0.001). Among the PTR group, 307 (72.9%) patients obtained longer overall survival than seven months (beneficial group). Then the LASSO logistic regression was performed, and gender, grade, T stage, N stage, pathology, and chemotherapy were included to construct the nomogram. In both the training and validation cohorts, the nomogram exhibited good discrimination (AUC: 0.761 and 0.753, respectively). Furthermore, the other nomogram was constructed to predict 3-, 6-, and 12-month cancer-specific survival based on the variables from the multivariate Cox analysis. The 3-, 6-, and 12-month AUC values were 0.794, 0.739, and 0.698 in the training cohort, and 0.805, 0.759, and 0.695 in the validation cohorts. The calibration curves demonstrated relatively good consistency between the predicted and observed probabilities of survival in two nomograms. The models' clinical utility was revealed through decision curve analysis.

CONCLUSION

The benefit nomogram could guide surgeons in decision-making and selecting optimal candidates for PTR among mGAC patients. And the prognostic nomogram presented great prediction ability for these patients.

摘要

背景

本研究旨在构建一种新的预测列线图,以识别可能从原发肿瘤切除(PTR)中获益的特定转移性胃腺癌(mGAC)人群。

方法

将 mGAC 患者纳入 SEER 数据库,并分为 PTR 和非-PTR 组。然后使用 Kaplan-Meier 分析、倾向评分匹配(PSM)、最小绝对收缩和选择算子(LASSO)回归、多变量逻辑回归和多变量 Cox 回归方法。最后,构建并测试了预测列线图。

结果

共纳入 3185 例 mGAC 患者。其中,679 例患者接受了 PTR,而其余 2506 例患者未接受 PTR。PSM 后,PTR 组患者的中位总生存期更长(15.0 个月 vs. 7.0 个月,p < 0.001)。在 PTR 组中,307 例(72.9%)患者的总生存期长于七个月(获益组)。然后进行 LASSO 逻辑回归,纳入性别、分级、T 分期、N 分期、病理和化疗,构建列线图。在训练集和验证集中,该列线图均具有良好的区分度(AUC:分别为 0.761 和 0.753)。此外,还根据多变量 Cox 分析中的变量构建了预测 3、6 和 12 个月癌症特异性生存的列线图。在训练队列中,3、6 和 12 个月的 AUC 值分别为 0.794、0.739 和 0.698,在验证队列中分别为 0.805、0.759 和 0.695。校准曲线表明,两个列线图的预测生存概率与观察生存概率之间具有较好的一致性。通过决策曲线分析揭示了这些模型的临床实用性。

结论

该获益列线图可指导外科医生在 mGAC 患者中进行决策,并选择 PTR 的最佳候选者。并且该预后列线图对这些患者具有很好的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edfb/10807831/c7afe6a21300/pone.0292895.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验