Suppr超能文献

中文标题:建立并验证中国自身免疫性肝炎患者肝纤维化程度的无创预测模型。 中文译文:开发和验证一种用于预测中国自身免疫性肝炎患者显著肝纤维化的非侵入性模型。

Development and validation of a noninvasive prediction model for significant hepatic liver fibrosis in Chinese patients with autoimmune hepatitis.

机构信息

The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China; Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, PR China.

Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, PR China.

出版信息

Ann Hepatol. 2024 May-Jun;29(3):101287. doi: 10.1016/j.aohep.2024.101287. Epub 2024 Jan 22.

Abstract

INTRODUCTION AND OBJECTIVES

Autoimmune hepatitis (AIH) is a prevalent noninfectious liver disease. However, there is currently a lack of noninvasive tests appropriate for evaluating liver fibrosis in AIH patients. The objective of this study was to develop and validate a predictive model for noninvasive assessment of significant liver fibrosis (S ≥ 2) in patients to provide a reliable method for evaluating liver fibrosis in individuals with AIH.

MATERIALS AND METHODS

The clinical data of 374 AIH patients were analyzed. A prediction model was established through logistic regression in the training set, and bootstrap method was used to validate the models internally. In addition, the clinical data of 109 AIH patients were collected for external verification of the model.The model was expressed as a nomogram, and area under the curve (AUC) of the receiver operating characteristic (ROC), calibration curve, and decision curve analysis were used to evaluate the accuracy of the prediction model.

RESULTS

Logistic regression analysis revealed that age, platelet count (PLT), and the A/G ratio were identified as independent risk factors for liver fibrosis in AIH patients (P < 0.05). The diagnostic model that was composed of age, PLT and A/G was superior to APRI and FIB-4 in both the internal validation (0.872, 95%CI: 0.819-0.924) and external validation (0.829, 95%CI: 0.753-0.904).

CONCLUSIONS

Our predictive model can predict significant liver fibrosis in AIH patients more accurately, simply, and noninvasively.

摘要

简介和目的

自身免疫性肝炎(AIH)是一种常见的非传染性肝脏疾病。然而,目前缺乏适用于评估 AIH 患者肝纤维化的非侵入性检测方法。本研究旨在开发和验证一种用于预测 AIH 患者显著肝纤维化(S≥2)的无创评估模型,为评估 AIH 个体的肝纤维化提供可靠方法。

材料和方法

分析了 374 例 AIH 患者的临床数据。通过训练集中的逻辑回归建立预测模型,并使用 bootstrap 方法进行内部模型验证。此外,还收集了 109 例 AIH 患者的临床数据用于模型的外部验证。模型以列线图的形式表示,通过接受者操作特征曲线(ROC)下面积(AUC)、校准曲线和决策曲线分析来评估预测模型的准确性。

结果

逻辑回归分析显示,年龄、血小板计数(PLT)和 A/G 比值是 AIH 患者肝纤维化的独立危险因素(P<0.05)。由年龄、PLT 和 A/G 组成的诊断模型在内部验证(0.872,95%CI:0.819-0.924)和外部验证(0.829,95%CI:0.753-0.904)中均优于 APRI 和 FIB-4。

结论

我们的预测模型可以更准确、简单、无创地预测 AIH 患者的显著肝纤维化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验