Laboratorio de Investigación Ambiental Acuático, HUB AMBIENTAL UPLA, Universidad de Playa Ancha. Subida Leopoldo Carvallo 207, acceso Hospital del Salvador, 2360004, Valparaíso, Chile; Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha. Subida Leopoldo Carvallo 270, 2360004, Valparaíso, Chile. Valparaíso, Chile.
Laboratorio de Investigación Ambiental Acuático, HUB AMBIENTAL UPLA, Universidad de Playa Ancha. Subida Leopoldo Carvallo 207, acceso Hospital del Salvador, 2360004, Valparaíso, Chile; Doctorado Interdisciplinario en Ciencias Ambientales, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha. Subida Leopoldo Carvallo 270, 2360004, Valparaíso, Chile.
Sci Total Environ. 2024 Mar 15;916:170326. doi: 10.1016/j.scitotenv.2024.170326. Epub 2024 Jan 22.
Seawater desalination by reverse osmosis is growing exponentially due to water scarcity. Byproducts of this process (e.g. brines), are generally discharged directly into the coastal ecosystem, causing detrimental effects, on benthic organisms. Understanding the cellular stress response of these organisms (biomarkers), could be crucial for establishing appropriate salinity thresholds for discharged brines. Early stress biomarkers can serve as valuable tools for monitoring the health status of brine-impacted organisms, enabling the prediction of long-term irreversible damage caused by the desalination industry. In this study, we conducted laboratory-controlled experiments to assess cellular and molecular biomarkers against brine exposure in two salinity-sensitive Mediterranean seagrasses: Posidonia oceanica and Cymodocea nodosa. Treatments involved exposure to 39, 41, and 43 psu, for 6 h and 7 days. Results indicated that photosynthetic performance remained unaffected across all treatments. However, under 43 psu, P. oceanica and C. nodosa exhibited lipid oxidative damage, which occurred earlier in P. oceanica. Additionally, P. oceanica displayed an antioxidant response at higher salinities by accumulating phenolic compounds within 6 h and ascorbate within 7 d; whereas for C. nodosa the predominant antioxidant mechanisms were phenolic compounds accumulation and total radical scavenging activity, which was evident after 7 d of brines exposure. Finally, transcriptomic analyses in P. oceanica exposed to 43 psu for 7 days revealed a poor up-regulation of genes associated with brassinosteroid response and abiotic stress response, while a high down-regulation of genes related to primary metabolism was detected. In C. nodosa, up-regulated genes were involved in DNA repair, cell cycle regulation, and reproduction, while down-regulated genes were mainly associated with photosynthesis and ribosome assembly. Overall, these findings suggest that 43 psu is a critical salinity-damage threshold for both seagrasses; and despite the moderate overexpression of several transcripts that could confer salt tolerance, genes involved in essential biological processes were severely downregulated.
由于水资源短缺,反渗透海水淡化技术正在呈指数级增长。该过程的副产物(例如盐水)通常直接排放到沿海生态系统中,对底栖生物造成有害影响。了解这些生物(生物标志物)的细胞应激反应对于为排放的盐水建立适当的盐度阈值可能至关重要。早期的应激生物标志物可以作为监测受盐水影响的生物健康状况的有价值工具,从而可以预测海水淡化产业造成的长期不可逆损害。在这项研究中,我们进行了实验室控制实验,以评估两种对盐度敏感的地中海海草:海洋波叶菊(Posidonia oceanica)和宽叶雀稗(Cymodocea nodosa)暴露于盐水中的细胞和分子生物标志物。处理方法包括在 39、41 和 43 个 psu 下暴露 6 小时和 7 天。结果表明,所有处理对光合作用性能均无影响。但是,在 43 psu 下,海洋波叶菊和宽叶雀稗表现出脂质氧化损伤,而在海洋波叶菊中则更早发生。此外,在较高盐度下,海洋波叶菊通过在 6 小时内积累酚类化合物和在 7 天内积累抗坏血酸来显示抗氧化反应;而对于宽叶雀稗,主要的抗氧化机制是酚类化合物积累和总自由基清除活性,这在暴露于盐水 7 天后即可显现。最后,在暴露于 43 psu 7 天的海洋波叶菊的转录组分析中,发现与油菜素内酯反应和非生物胁迫反应相关的基因上调表达较差,而与初级代谢相关的基因下调表达较高。在宽叶雀稗中,上调的基因涉及 DNA 修复、细胞周期调控和繁殖,而下调的基因主要与光合作用和核糖体组装有关。总体而言,这些发现表明 43 psu 是两种海草的临界盐度损伤阈值;尽管几种可能赋予耐盐性的转录物中度过度表达,但与基本生物过程相关的基因严重下调。