Nguyen-Cong Kien, Willman Jonathan T, Gonzalez Joseph M, Williams Ashley S, Belonoshko Anatoly B, Moore Stan G, Thompson Aidan P, Wood Mitchell A, Eggert Jon H, Millot Marius, Zepeda-Ruiz Luis A, Oleynik Ivan I
Department of Physics, University of South Florida, Tampa, Florida 33620, United States.
Department of Physics, Royal Institute of Technology, 106691 Stockholm, Sweden.
J Phys Chem Lett. 2024 Feb 1;15(4):1152-1160. doi: 10.1021/acs.jpclett.3c03044. Epub 2024 Jan 25.
Diamond possesses exceptional physical properties due to its remarkably strong carbon-carbon bonding, leading to significant resilience to structural transformations at very high pressures and temperatures. Despite several experimental attempts, synthesis and recovery of the theoretically predicted post-diamond BC8 phase remains elusive. Through quantum-accurate multimillion atom molecular dynamics (MD) simulations, we have uncovered the extreme metastability of diamond at very high pressures, significantly exceeding its range of thermodynamic stability. We predict the post-diamond BC8 phase to be experimentally accessible only within a narrow high pressure-temperature region of the carbon phase diagram. The diamond to BC8 transformation proceeds through premelting followed by BC8 nucleation and growth in the metastable carbon liquid. We propose a double-shock compression pathway for BC8 synthesis, which is currently being explored in experiments at the National Ignition Facility.
由于其极强的碳-碳键,钻石具有卓越的物理性质,这使得它在极高的压力和温度下对结构转变具有显著的抵抗力。尽管进行了多次实验尝试,但理论上预测的后金刚石BC8相的合成与回收仍然难以实现。通过精确到量子级别的数百万原子分子动力学(MD)模拟,我们发现了钻石在极高压力下的极端亚稳性,其亚稳范围显著超过了其热力学稳定范围。我们预测,后金刚石BC8相仅在碳相图中狭窄的高压-温度区域内才能通过实验获得。从钻石到BC8的转变是通过预熔化,然后在亚稳碳液体中进行BC8的成核和生长来实现的。我们提出了一种用于BC8合成的双冲击压缩途径,目前国家点火设施正在对其进行实验探索。