Suppr超能文献

多酚抗氧化相关性质的密度泛函理论基准测试

A density functional theory benchmark on antioxidant-related properties of polyphenols.

作者信息

Mendes Rodrigo A, da Mata Victor A S, Brown Alex, de Souza Gabriel L C

机构信息

Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, 78060-900, Brazil.

Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.

出版信息

Phys Chem Chem Phys. 2024 Mar 13;26(11):8613-8622. doi: 10.1039/d3cp04412b.

Abstract

In this work, we present a density functional theory benchmark on antioxidant-related properties for a series of six polyphenols that are well-known antioxidants: caffeic acid, cyanidin, ellagic acid, gallic acid, myricetin, and phloretin. Computations on the 24 O-H bond dissociation enthalpies (BDEs) and 6 ionization potentials (IPs) were performed using twenty-three exchange-correlation functionals combined with four different basis sets in the gas-phase, water, and methanol; calibration against the Domain-based Local Pair Natural Orbital CCSD(T) (DLPNO-CCSD(T)) approach was employed. Mean absolute deviation (MAD) as well as linear fitting results suggested the LC-PBE approach as the most suitable for O-H BDEs in the gas-phase. The LC-PBE, M06-2X, and M05-2X results presented the smallest MADs for O-H BDEs when compared to the reference, in water. The LC-PBE results had the smallest MADs for IPs in the gas-phase while M05-2X, M06-2X, LC-PBE, and LC-PBE exhibited the best results for MAD in water. We expect the outcomes from the present work will serve as general guidance for researchers working in the field.

摘要

在本研究中,我们针对六种著名的抗氧化剂多酚:咖啡酸、花青素、鞣花酸、没食子酸、杨梅素和根皮素,开展了与抗氧化相关性质的密度泛函理论基准测试。在气相、水和甲醇中,使用二十三种交换相关泛函结合四种不同基组,对24个O-H键解离焓(BDE)和6个电离势(IP)进行了计算;采用了基于域的定域对自然轨道耦合簇(DLPNO-CCSD(T))方法进行校准。平均绝对偏差(MAD)以及线性拟合结果表明,LC-PBE方法最适合气相中的O-H BDE。与参考值相比,在水中,LC-PBE、M06-2X和M05-2X的结果对于O-H BDE呈现出最小的MAD。在气相中,LC-PBE结果对于IP具有最小的MAD,而在水中,M05-2X、M06-2X、LC-PBE和LC-PBE在MAD方面表现出最佳结果。我们期望本研究的结果将为该领域的研究人员提供一般指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验