Suppr超能文献

HPteGlu与HPtePAS之间的竞争赋予了对氨基水杨酸抗性。 (你提供的原文不完整,推测是关于某种生物中两种物质竞争赋予对氨基水杨酸抗性的内容,这里按照字面意思翻译了。)

Competition between HPteGlu and HPtePAS Confers -Aminosalicylic Acid Resistance in .

作者信息

Yu Ji-Fang, Xu Jin-Tian, Feng Ao, Qi Bao-Ling, Gu Jing, Deng Jiao-Yu, Zhang Xian-En

机构信息

Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.

出版信息

Antibiotics (Basel). 2023 Dec 21;13(1):13. doi: 10.3390/antibiotics13010013.

Abstract

Tuberculosis remains a serious challenge to human health worldwide. -Aminosalicylic acid (PAS) is an important anti-tuberculosis drug, which requires sequential activation by () dihydropteroate synthase and dihydrofolate synthase (DHFS, FolC). Previous studies showed that loss of function mutations of a thymidylate synthase coding gene caused PAS resistance in , but the mechanism is unclear. Here we showed that deleting in resulted in increased content of tetrahydrofolate (HPteGlu) in bacterial cells as they rely on the other thymidylate synthase ThyX to synthesize thymidylate, which produces HPteGlu during the process. Subsequently, data of in vitro enzymatic activity experiments showed that HPteGlu hinders PAS activation by competing with hydroxy dihydropteroate (HPtePAS) for FolC catalysis. Meanwhile, over-expressing in Δ strain and a PAS resistant clinical isolate with known mutation partially restored PAS sensitivity, which relieved the competition between HPteGlu and HPtePAS. Thus, loss of function mutations in led to increased HPteGlu content in bacterial cells, which competed with HPtePAS for catalysis by FolC and hence hindered the activation of PAS, leading to decreased production of hydroxyl dihydrofolate (HPtePAS-Glu) and finally caused PAS resistance. On the other hand, functional deficiency of in pushes the bacterium switch to an unidentified dihydrofolate reductase for HPteGlu biosynthesis, which might also contribute to the PAS resistance phenotype. Our study revealed how mutations confer PAS resistance in and provided new insights into studies on the folate metabolism of the bacterium.

摘要

结核病仍然是全球人类健康面临的严峻挑战。对氨基水杨酸(PAS)是一种重要的抗结核药物,它需要由二氢蝶酸合酶和二氢叶酸合酶(DHFS,FolC)依次激活。先前的研究表明,胸苷酸合酶编码基因的功能丧失突变会导致结核分枝杆菌对PAS产生耐药性,但其机制尚不清楚。在此我们表明,在结核分枝杆菌中缺失thyA会导致细菌细胞中四氢叶酸(HPteGlu)含量增加,因为它们依赖另一种胸苷酸合酶ThyX来合成胸苷酸,在此过程中会产生HPteGlu。随后,体外酶活性实验数据表明,HPteGlu通过与羟基二氢蝶酸(HPtePAS)竞争FolC催化作用来阻碍PAS的激活。同时,在ΔthyA菌株和具有已知thyA突变的PAS耐药临床分离株中过表达thyA部分恢复了PAS敏感性,这减轻了HPteGlu与HPtePAS之间的竞争。因此,thyA中的功能丧失突变导致细菌细胞中HPteGlu含量增加,其与HPtePAS竞争FolC的催化作用,从而阻碍了PAS的激活,导致羟基二氢叶酸(HPtePAS-Glu)生成减少,最终导致PAS耐药。另一方面,结核分枝杆菌中thyA的功能缺陷促使细菌转向一种未知的二氢叶酸还原酶进行HPteGlu生物合成,这也可能导致PAS耐药表型。我们的研究揭示了thyA突变如何使结核分枝杆菌对PAS产生耐药性,并为该细菌叶酸代谢的研究提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2279/10812664/a562d7b13f50/antibiotics-13-00013-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验