Suppr超能文献

基于辅助行动者判别器的自动驾驶深度强化学习

Deep Reinforcement Learning for Autonomous Driving with an Auxiliary Actor Discriminator.

作者信息

Gao Qiming, Chang Fangle, Yang Jiahong, Tao Yu, Ma Longhua, Su Hongye

机构信息

Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.

State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.

出版信息

Sensors (Basel). 2024 Jan 22;24(2):700. doi: 10.3390/s24020700.

Abstract

In the research of robot systems, path planning and obstacle avoidance are important research directions, especially in unknown dynamic environments where flexibility and rapid decision makings are required. In this paper, a state attention network (SAN) was developed to extract features to represent the interaction between an intelligent robot and its obstacles. An auxiliary actor discriminator (AAD) was developed to calculate the probability of a collision. Goal-directed and gap-based navigation strategies were proposed to guide robotic exploration. The proposed policy was trained through simulated scenarios and updated by the Soft Actor-Critic (SAC) algorithm. The robot executed the action depending on the AAD output. Heuristic knowledge (HK) was developed to prevent blind exploration of the robot. Compared to other methods, adopting our approach in robot systems can help robots converge towards an optimal action strategy. Furthermore, it enables them to explore paths in unknown environments with fewer moving steps (showing a decrease of 33.9%) and achieve higher average rewards (showning an increase of 29.15%).

摘要

在机器人系统的研究中,路径规划和避障是重要的研究方向,特别是在需要灵活性和快速决策的未知动态环境中。本文开发了一种状态注意力网络(SAN)来提取特征,以表示智能机器人与其障碍物之间的相互作用。开发了一种辅助动作判别器(AAD)来计算碰撞概率。提出了基于目标和基于间隙的导航策略来指导机器人探索。所提出的策略通过模拟场景进行训练,并由软演员-评论家(SAC)算法进行更新。机器人根据AAD输出执行动作。开发了启发式知识(HK)以防止机器人盲目探索。与其他方法相比,在机器人系统中采用我们的方法可以帮助机器人趋向于最优动作策略收敛。此外,它使机器人能够在未知环境中以更少的移动步数探索路径(减少33.9%)并获得更高的平均奖励(增加29.15%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c150/10818910/b61b5e7a0cd5/sensors-24-00700-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验