Srdinšek Miha, Prosen Tomaž, Sotiriadis Spyros
Institut des Sciences du Calcul et des Données (ISCD), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.
Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, MNHM, 4 Place Jussieu, 75005 Paris, France.
Phys Rev Lett. 2024 Jan 12;132(2):021601. doi: 10.1103/PhysRevLett.132.021601.
The validity of the ergodic hypothesis in quantum systems can be rephrased in the form of the eigenstate thermalization hypothesis (ETH), a set of statistical properties for the matrix elements of local observables in energy eigenstates, which is expected to hold in any ergodic system. We test the ETH in a nonintegrable model of relativistic quantum field theory (QFT) using the numerical method of Hamiltonian truncation in combination with analytical arguments based on Lorentz symmetry and renormalization group theory. We find that there is an infinite sequence of eigenstates with the characteristics of quantum many-body scars-that is, exceptional eigenstates with observable expectation values that lie far from thermal values-and we show that these states are one-quasiparticle states. We argue that in the thermodynamic limit the eigenstates cover the entire area between two diverging lines: the line of one-quasiparticle states, whose direction is dictated by relativistic kinematics, and the thermal average line. Our results suggest that the strong version of the ETH is violated in any relativistic QFT whose spectrum admits a quasiparticle description.
量子系统中遍历假设的有效性可以重新表述为本征态热化假设(ETH)的形式,这是一组关于能量本征态中局部可观测量矩阵元的统计性质,预计在任何遍历系统中都成立。我们使用哈密顿截断的数值方法,并结合基于洛伦兹对称性和重整化群理论的解析论证,在相对论量子场论(QFT)的一个不可积模型中检验ETH。我们发现存在一个具有量子多体伤疤特征的无限本征态序列,即具有远离热值的可观测量期望值的特殊本征态,并且我们表明这些态是单准粒子态。我们认为,在热力学极限下,本征态覆盖两条发散线之间的整个区域:一条由相对论运动学决定方向的单准粒子态线,以及热平均线。我们的结果表明,在任何其谱允许准粒子描述的相对论QFT中,ETH的强版本都被违反。