Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany.
Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
Nucleic Acids Res. 2024 Mar 21;52(5):e26. doi: 10.1093/nar/gkae038.
RNA-protein interactions determine the cellular fate of RNA and are central to regulating gene expression outcomes in health and disease. To date, no method exists that is able to identify proteins that interact with specific regions within endogenous RNAs in live cells. Here, we develop SHIFTR (Selective RNase H-mediated interactome framing for target RNA regions), an efficient and scalable approach to identify proteins bound to selected regions within endogenous RNAs using mass spectrometry. Compared to state-of-the-art techniques, SHIFTR is superior in accuracy, captures minimal background interactions and requires orders of magnitude lower input material. We establish SHIFTR workflows for targeting RNA classes of different length and abundance, including short and long non-coding RNAs, as well as mRNAs and demonstrate that SHIFTR is compatible with sequentially mapping interactomes for multiple target RNAs in a single experiment. Using SHIFTR, we comprehensively identify interactions of cis-regulatory elements located at the 5' and 3'-terminal regions of authentic SARS-CoV-2 RNAs in infected cells and accurately recover known and novel interactions linked to the function of these viral RNA elements. SHIFTR enables the systematic mapping of region-resolved RNA interactomes for any RNA in any cell type and has the potential to revolutionize our understanding of transcriptomes and their regulation.
RNA 与蛋白质的相互作用决定了 RNA 的细胞命运,是调节健康和疾病中基因表达结果的核心。迄今为止,还没有一种方法能够识别与活细胞内内源性 RNA 特定区域相互作用的蛋白质。在这里,我们开发了 SHIFTR(选择性 RNase H 介导的靶 RNA 区域互作框架),这是一种使用质谱法识别与内源性 RNA 选定区域结合的蛋白质的高效、可扩展的方法。与最先进的技术相比,SHIFTR 在准确性、最小背景相互作用方面具有优势,所需的输入材料数量级更低。我们建立了针对不同长度和丰度的 RNA 类别的 SHIFTR 工作流程,包括短链和长链非编码 RNA 以及 mRNA,并证明 SHIFTR 与在单个实验中对多个靶 RNA 进行互作谱序分析兼容。使用 SHIFTR,我们全面鉴定了感染细胞中真实 SARS-CoV-2 RNA 5'和 3'末端区域的顺式调控元件的相互作用,并准确恢复了与这些病毒 RNA 元件功能相关的已知和新的相互作用。SHIFTR 能够系统地绘制任何细胞类型中任何 RNA 的区域分辨率 RNA 互作图谱,有潜力彻底改变我们对转录组及其调控的理解。