Li Bo-Hui, Zhang Kai-Hua, Wang Xiao-Jing, Li Yu-Pei, Liu Xinying, Han Bao-Hang, Li Fa-Tang
Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China.
Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China.
J Colloid Interface Sci. 2024 Apr 15;660:961-973. doi: 10.1016/j.jcis.2024.01.159. Epub 2024 Jan 24.
High-performance photocatalysts for catalytic reduction of CO are largely impeded by inefficient charge separation and surface activity. Reasonable design and efficient collaboration of multiple active sites are important for attaining high reactivity and product selectivity. Herein, Cu-CuO and Ag nanoparticles are confined as dual sites for assisting CO photoreduction to CH on TiO. The introduction of Cu-CuO leads to an all-solid-state Z-scheme heterostructure on the TiO surface, which achieves efficient electron transfer to CuO and adsorption and activation of CO. The confined nanometallic Ag further enhances the carrier's separation efficiency, promoting the conversion of activated CO molecules to •COOH and further conversion to CH. Particularly, this strategy is highlighted on the TiO system for a photocatalytic reduction reaction of CO and HO with a CH generation rate of 62.5 μmol∙g∙h and an impressive selectivity of 97.49 %. This work provides new insights into developing robust catalysts through the artful design of synergistic catalytic sites for efficient photocatalytic CO conversion.
用于催化还原CO的高性能光催化剂在很大程度上受到电荷分离效率低下和表面活性的阻碍。多个活性位点的合理设计和有效协作对于实现高反应活性和产物选择性很重要。在此,Cu-CuO和Ag纳米颗粒被限制为在TiO上辅助CO光还原为CH的双位点。Cu-CuO的引入导致TiO表面形成全固态Z型异质结构,实现了向CuO的有效电子转移以及CO的吸附和活化。受限的纳米金属Ag进一步提高了载流子的分离效率,促进了活化的CO分子转化为•COOH并进一步转化为CH。特别地,这种策略在TiO体系上用于CO和H₂O的光催化还原反应时表现突出,CH生成速率为62.5 μmol∙g⁻¹∙h⁻¹,选择性高达97.49%。这项工作通过巧妙设计协同催化位点以实现高效光催化CO转化,为开发稳健的催化剂提供了新的见解。