Suppr超能文献

人工智能和机器学习在肾脏护理中的趋势。

Artificial intelligence and machine learning trends in kidney care.

机构信息

Trend Research Centre, Asia University, Wufeng, Taichung, Taiwan.

Medical Services, Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA.

出版信息

Am J Med Sci. 2024 May;367(5):281-295. doi: 10.1016/j.amjms.2024.01.018. Epub 2024 Jan 26.

Abstract

BACKGROUND

The integration of artificial intelligence (AI) and machine learning (ML) in kidney care has seen a significant rise in recent years. This study specifically analyzed AI and ML research publications related to kidney care to identify leading authors, institutions, and countries in this area. It aimed to examine publication trends and patterns, and to explore the impact of collaborative efforts on citation metrics.

METHODS

The study used the Science Citation Index Expanded (SCI-EXPANDED) of Clarivate Analytics Web of Science Core Collection to search for AI and machine learning publications related to nephrology from 1992 to 2021. The authors used quotation marks and Boolean operator "or" to search for keywords in the title, abstract, author keywords, and Keywords Plus. In addition, the 'front page' filter was applied. A total of 5425 documents were identified and analyzed.

RESULTS

The results showed that articles represent 75% of the analyzed documents, with an average author to publications ratio of 7.4 and an average number of citations per publication in 2021 of 18. English articles had a higher citation rate than non-English articles. The USA dominated in all publication indicators, followed by China. Notably, the research also showed that collaborative efforts tend to result in higher citation rates. A significant portion of the publications were found in urology journals, emphasizing the broader scope of kidney care beyond traditional nephrology.

CONCLUSIONS

The findings underscore the importance of AI and ML in enhancing kidney care, offering a roadmap for future research and implementation in this expanding field.

摘要

背景

近年来,人工智能(AI)和机器学习(ML)在肾脏护理中的融合得到了显著发展。本研究专门分析了与肾脏护理相关的 AI 和 ML 研究出版物,以确定该领域的主要作者、机构和国家。其目的是检查出版趋势和模式,并探讨合作努力对引文指标的影响。

方法

本研究使用科睿唯安 Web of Science 核心合集的科学引文索引扩展版(SCI-EXPANDED),从 1992 年到 2021 年,在标题、摘要、作者关键词和关键词 Plus 中使用引号和布尔运算符“或”搜索与肾脏病学相关的 AI 和机器学习出版物。此外,还应用了“首页”筛选。共确定并分析了 5425 篇文献。

结果

结果表明,文章占分析文献的 75%,平均每位作者的出版物数量为 7.4 篇,2021 年的平均每篇出版物被引次数为 18 次。英文文章的引用率高于非英文文章。美国在所有出版指标中均占据主导地位,其次是中国。值得注意的是,研究还表明,合作倾向于产生更高的引用率。大量出版物出现在泌尿科期刊中,这强调了肾脏护理的范围超出了传统肾脏病学。

结论

这些发现强调了 AI 和 ML 在增强肾脏护理方面的重要性,为这一不断扩展的领域的未来研究和实施提供了路线图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验