Chekmazov Sergey V, Ksenz Andrei S, Ionov Andrei M, Mazilkin Andrey A, Smirnov Anton A, Pershina Elena A, Ryzhkin Ivan A, Vilkov Oleg Yu, Walls Brian, Zhussupbekov Kuanysh, Shvets Igor V, Bozhko Sergey I
Institute of Solid State Physics, RAS, Chernogolovka, Russia.
School of Physics, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland.
Sci Rep. 2024 Jan 28;14(1):2331. doi: 10.1038/s41598-024-52411-x.
Sb is a three-dimensional Peierls insulator. The Peierls instability gives rise to doubling of the translational period along the [111] direction and alternating van der Waals and covalent bonding between (111) atomic planes. At the (111) surface of Sb, the Peierls condition is violated, which in theory can give rise to properties differing from the bulk. The atomic and electronic structure of the (111) surface of Sb have been simulated by density functional theory calculations. We have considered the two possible (111) surfaces, containing van der Waals dangling bonds or containing covalent dangling bonds. In the models, the surfaces are infinite and the structure is defect free. Structural optimization of the model containing covalent dangling bonds results in strong deformation, which is well described by a topological soliton within the Su-Schrieffer-Heeger model centered about 25 Å below the surface. The electronic states associated with the soliton see an increase in the density of states (DOS) at the Fermi level by around an order of magnitude at the soliton center. Scanning tunneling microscopy and spectroscopy (STM/STS) measurements reveal two distinct surface regions, indicating that there are different surface regions cleaving van der Waals and covalent bonds. The DFT is in good agreement with the STM/STS experiments.
锑是一种三维派尔斯绝缘体。派尔斯不稳定性导致沿[111]方向的平移周期加倍,以及(111)原子平面之间交替的范德华键和共价键。在锑的(111)表面,派尔斯条件被违反,理论上这会产生与体相不同的性质。通过密度泛函理论计算模拟了锑(111)表面的原子和电子结构。我们考虑了两种可能的(111)表面,一种含有范德华悬空键,另一种含有共价悬空键。在模型中,表面是无限的且结构无缺陷。含有共价悬空键的模型的结构优化导致强烈变形,这在以表面下方约25 Å为中心的Su-Schrieffer-Heeger模型中的拓扑孤子能很好地描述。与孤子相关的电子态在孤子中心处的费米能级态密度(DOS)增加了约一个数量级。扫描隧道显微镜和能谱(STM/STS)测量揭示了两个不同的表面区域,表明存在不同的表面区域,分别切断范德华键和共价键。密度泛函理论与STM/STS实验结果吻合良好。