Jilin Cancer Hospital, Changchun, Jilin, China.
Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
J Gene Med. 2024 Jan;26(1):e3651. doi: 10.1002/jgm.3651.
Bladder cancer (BLCA) is a prevalent malignancy worldwide. Anoikis remains a new form of cell death. It is necessary to explore Anoikis-related genes in the prognosis of BLCA.
We obtained RNA expression profiles from the The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases for dimensionality reduction analysis and isolated epithelial cells, T cells and fibroblasts for copy number variation analysis, pseudotime analysis and transcription factor analysis based on R package. We integrated machine-learning algorithms to develop the artificial intelligence-derived prognostic signature (AIDPS).
The performance of AIDPS with clinical indicators was stable and robust in predicting BLCA and showed better performance in every validation dataset compared to other models. Mendelian randomization analysis was conducted. Single nucleotide polymorphism (SNP) sites of rs3100578 (HK2) and rs66467677 (HSP90B1) exhibited significant correlation of bladder problem (not cancer) and bladder cancer, whereasSNP sites of rs3100578 (HK2) and rs947939 (BAD) had correlation between bladder stone and bladder cancer. The immune infiltration analysis of the TCGA-BLCA cohort was calculated via the ESTIMATE (i.e. Estimation of STromal and Immune cells in MAlignantTumours using Expression data) algorithm which contains stromal, immune and estimate scores. We also found significant differences in the IC values of Bortezomib_1191, Docetaxel_1007, Staurosporine_1034 and Rapamycin_1084 among the high- and low-risk groups.
In conclusion, these findings indicated Anoikis-related prognostic genes in BLCA and constructed an innovative machine-learning model of AIDPS with high prognostic value for BLCA.
膀胱癌(BLCA)是一种全球流行的恶性肿瘤。凋亡仍然是一种新的细胞死亡形式。有必要探讨凋亡相关基因在 BLCA 预后中的作用。
我们从癌症基因组图谱(TCGA)和基因表达综合数据库中获取了 RNA 表达谱,进行降维分析,并基于 R 包分离上皮细胞、T 细胞和成纤维细胞进行拷贝数变异分析、伪时间分析和转录因子分析。我们整合机器学习算法来开发人工智能衍生的预后签名(AIDPS)。
AIDPS 与临床指标相结合,在预测 BLCA 方面表现稳定且稳健,在每个验证数据集上的表现均优于其他模型。进行了孟德尔随机化分析。单核苷酸多态性(SNP)rs3100578(HK2)和 rs66467677(HSP90B1)位点与膀胱问题(非癌症)和膀胱癌显著相关,而 SNP 位点 rs3100578(HK2)和 rs947939(BAD)与膀胱结石和膀胱癌之间存在相关性。通过 ESTIMATE(即通过表达数据估计恶性肿瘤中基质和免疫细胞)算法计算 TCGA-BLCA 队列的免疫浸润分析,其中包含基质、免疫和估计评分。我们还发现高危组和低危组之间 Bortezomib_1191、Docetaxel_1007、Staurosporine_1034 和 Rapamycin_1084 的 IC 值存在显著差异。
总之,这些发现表明凋亡相关的预后基因在 BLCA 中起作用,并构建了具有高预后价值的 BLCA 创新的人工智能预后模型 AIDPS。