Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar.
Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
Front Immunol. 2024 Jan 12;14:1266776. doi: 10.3389/fimmu.2023.1266776. eCollection 2023.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surfaced on 31 December, 2019, and was identified as the causative agent of the global COVID-19 pandemic, leading to a pneumonia-like disease. One of its accessory proteins, ORF6, has been found to play a critical role in immune evasion by interacting with KPNA2 to antagonize IFN signaling and production pathways, resulting in the inhibition of IRF3 and STAT1 nuclear translocation. Since various mutations have been observed in ORF6, therefore, a comparative binding, biophysical, and structural analysis was used to reveal how these mutations affect the virus's ability to evade the human immune system. Among the identified mutations, the V9F, V24A, W27L, and I33T, were found to have a highly destabilizing effect on the protein structure of ORF6. Additionally, the molecular docking analysis of wildtype and mutant ORF6 and KPNA2 revealed the docking score of - 53.72 kcal/mol for wildtype while, -267.90 kcal/mol, -258.41kcal/mol, -254.51 kcal/mol and -268.79 kcal/mol for V9F, V24A, W27L, and I33T respectively. As compared to the wildtype the V9F showed a stronger binding affinity with KPNA2 which is further verified by the binding free energy (-42.28 kcal/mol) calculation. Furthermore, to halt the binding interface of the ORF6-KPNA2 complex, we used a computational molecular search of potential natural products. A multi-step virtual screening of the African natural database identified the top 5 compounds with best docking scores of -6.40 kcal/mol, -6.10 kcal/mol, -6.09 kcal/mol, -6.06 kcal/mol, and -6.03 kcal/mol for tophit1-5 respectively. Subsequent all-atoms simulations of these top hits revealed consistent dynamics, indicating their stability and their potential to interact effectively with the interface residues. In conclusion, our study represents the first attempt to establish a foundation for understanding the heightened infectivity of new SARS-CoV-2 variants and provides a strong impetus for the development of novel drugs against them.
严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)于 2019 年 12 月 31 日出现,并被确定为导致全球 COVID-19 大流行的病原体,引发类似肺炎的疾病。其一种辅助蛋白 ORF6 已被发现通过与 KPNA2 相互作用来逃避免疫,从而拮抗 IFN 信号和产生途径,从而抑制 IRF3 和 STAT1 的核易位,从而在免疫逃避中发挥关键作用。由于已经观察到 ORF6 中的各种突变,因此使用比较结合、生物物理和结构分析来揭示这些突变如何影响病毒逃避人体免疫系统的能力。在所鉴定的突变中,V9F、V24A、W27L 和 I33T 被发现对 ORF6 的蛋白质结构具有高度不稳定的作用。此外,野生型和突变型 ORF6 和 KPNA2 的分子对接分析显示,野生型的对接评分为-53.72 kcal/mol,而 V9F、V24A、W27L 和 I33T 的对接评分分别为-267.90 kcal/mol、-258.41kcal/mol、-254.51 kcal/mol 和-268.79 kcal/mol。与野生型相比,V9F 与 KPNA2 具有更强的结合亲和力,这进一步通过结合自由能(-42.28 kcal/mol)计算得到验证。此外,为了阻止 ORF6-KPNA2 复合物的结合界面,我们使用了潜在天然产物的计算分子搜索。对非洲天然数据库的多步虚拟筛选确定了 top5 化合物,其对接评分分别为-6.40 kcal/mol、-6.10 kcal/mol、-6.09 kcal/mol、-6.06 kcal/mol 和-6.03 kcal/mol。这些 top hit 的全原子模拟显示出一致的动力学,表明它们的稳定性及其与界面残基有效相互作用的潜力。总之,我们的研究代表了首次尝试建立理解新型 SARS-CoV-2 变体高度传染性的基础,并为开发针对它们的新型药物提供了强大的动力。