Suppr超能文献

基于全麻状态下脑电信号的全Hilbert 谱分析的幅度调制分析。

Analysis of Amplitude Modulation of EEG Based on Holo-Hilbert Spectrum Analysis During General Anesthesia.

出版信息

IEEE Trans Biomed Eng. 2024 May;71(5):1607-1616. doi: 10.1109/TBME.2023.3345942. Epub 2024 Apr 22.

Abstract

OBJECTIVE

The study aims to investigate the relationship between amplitude modulation (AM) of EEG and anesthesia depth during general anesthesia.

METHODS

In this study, Holo-Hilbert spectrum analysis (HHSA) was used to decompose the multichannel EEG signals of 15 patients to obtain the spatial distribution of AM in the brain. Subsequently, HHSA was applied to the prefrontal EEG (Fp1) obtained during general anesthesia surgery in 15 and 34 patients, and the α-θ and α-δ regions of feature (ROFs) were defined in Holo-Hilbert spectrum (HHS) and three features were derived to quantify AM in ROFs.

RESULTS

During anesthetized phase, an anteriorization of the spatial distribution of AMs of α-carrier in brain was observed, as well as AMs of α-θ and α-δ in the EEG of Fp1. The total power ([Formula: see text]), mean carrier frequency ([Formula: see text]) and mean amplitude frequency ([Formula: see text]) of AMs changed during different anesthesia states.

CONCLUSION

HHSA can effectively analyze the cross-frequency coupling of EEG during anesthesia and the AM features may be applied to anesthesia monitoring.

SIGNIFICANCE

The study provides a new perspective for the characterization of brain states during general anesthesia, which is of great significance for exploring new features of anesthesia monitoring.

摘要

目的

本研究旨在探讨全身麻醉期间脑电(EEG)幅度调制(AM)与麻醉深度的关系。

方法

本研究采用 Holo-Hilbert 谱分析(HHSA)对 15 例患者的多通道 EEG 信号进行分解,以获得脑内 AM 的空间分布。随后,将 HHSA 应用于全身麻醉手术期间的 15 例和 34 例患者的前额叶 EEG(Fp1),在 Holo-Hilbert 谱(HHS)中定义 α-θ 和 α-δ 特征区(ROFs),并提取三个特征来量化 ROFs 中的 AM。

结果

在麻醉期,观察到脑内 α 载波 AM 的空间分布以及 Fp1 的 EEG 中 α-θ 和 α-δ 的 AM 出现前导化。在不同麻醉状态下,AM 的总功率([公式:见文本])、平均载波频率([公式:见文本])和平均幅度频率([公式:见文本])发生变化。

结论

HHSA 可以有效地分析麻醉期间 EEG 的交叉频率耦合,AM 特征可能应用于麻醉监测。

意义

该研究为全身麻醉期间脑状态的特征描述提供了新的视角,对探索麻醉监测的新特征具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验