用于毒理学病理学的全玻片图像扫描仪的颜色再现性评估和颜色变化缓解。

Assessment of Color Reproducibility and Mitigation of Color Variation in Whole Slide Image Scanners for Toxicologic Pathology.

机构信息

Genentech Inc., South San Francisco, California, USA.

出版信息

Toxicol Pathol. 2023 Aug;51(6):313-328. doi: 10.1177/01926233231224468. Epub 2024 Jan 30.

Abstract

Digital pathology workflows in toxicologic pathology rely on whole slide images (WSIs) from histopathology slides. Inconsistent color reproduction by WSI scanners of different models and from different manufacturers can result in different color representations and inter-scanner color variation in the WSIs. Although pathologists can accommodate a range of color variation during their evaluation of WSIs, color variability can degrade the performance of computational applications in digital pathology. In particular, color variability can compromise the generalization of artificial intelligence applications to large volumes of data from diverse sources. To address these challenges, we developed a process that includes two modules: (1) assessing the color reproducibility of our scanners and the color variation among them and (2) applying color correction to WSIs to minimize the color deviation and variation. Our process ensures consistent color reproduction across WSI scanners and enhances color homogeneity in WSIs, and its flexibility enables easy integration as a post-processing step following scanning by WSI scanners of different models and from different manufacturers.

摘要

毒理学病理学中的数字病理学工作流程依赖于组织病理学幻灯片的全玻片图像 (WSI)。不同型号和不同制造商的 WSI 扫描仪的颜色再现不一致,会导致 WSI 中的颜色表示和扫描仪之间的颜色变化不同。尽管病理学家可以在评估 WSI 时适应一定范围的颜色变化,但颜色变化会降低数字病理学中计算应用程序的性能。特别是,颜色变化会影响人工智能应用程序对来自不同来源的大量数据的泛化能力。为了解决这些挑战,我们开发了一个包含两个模块的流程:(1)评估我们的扫描仪的颜色再现性和它们之间的颜色变化,以及(2)对 WSI 应用颜色校正以最小化颜色偏差和变化。我们的流程确保了 WSI 扫描仪之间的颜色再现一致性,并增强了 WSI 中的颜色均匀性,其灵活性使其能够作为不同型号和不同制造商的 WSI 扫描仪扫描后的后处理步骤轻松集成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索