Université du Québec à Chicoutimi, Canada.
Université du Québec à Chicoutimi, Canada.
J Affect Disord. 2024 Apr 15;351:746-754. doi: 10.1016/j.jad.2024.01.236. Epub 2024 Jan 28.
Prior studies on Prolonged Grief Disorder (PGD) primarily employed classical approaches to link bereaved individuals' characteristics with PGD symptom levels. This study utilized machine learning to identify key factors influencing PGD symptoms during the COVID-19 pandemic.
We analyzed data from 479 participants through an online survey, employing classical data exploration, predictive machine learning, and SHapley Additive exPlanations (SHAP) to determine key factors influencing PGD symptoms measured with the Traumatic Grief Inventory - Self Report (TGI-SR) from 19 variables, comparing five predictive models.
The classical approach identified eight variables associated with a possible PGD (TGI-SR score ≥ 59): unexpected causes of death, living alone, seeking professional support, taking anxiety and/or depression medications, using more grief services (telephone or online supports) and more confrontation-oriented coping strategies, and higher levels of depression and anxiety. Using machine learning techniques, the CatBoost algorithm provided the best predictive model of the TGI-SR score (r = 0.6479). The three variables influencing the most the level of PGD symptoms were anxiety, and levels of avoidance and confrontation coping strategies used.
This pioneering approach within the field of grief research enabled us to leverage the extensive dataset collected during the pandemic, facilitating a deeper comprehension of the predominant factors influencing the grieving process for individuals who experienced loss during this period.
This study acknowledges self-selection bias, limited sample diversity, and suggests further research is needed to fully understand the predictors of PGD symptoms.
先前关于延长哀伤障碍(PGD)的研究主要采用经典方法将丧亲个体的特征与 PGD 症状水平联系起来。本研究利用机器学习来确定在 COVID-19 大流行期间影响 PGD 症状的关键因素。
我们通过在线调查分析了 479 名参与者的数据,采用经典的数据探索、预测机器学习和 SHapley Additive exPlanations(SHAP)来确定影响创伤后悲伤量表自我报告(TGI-SR)的 19 个变量的 PGD 症状的关键因素,比较了五个预测模型。
经典方法确定了与可能的 PGD 相关的八个变量(TGI-SR 得分≥59):意外死亡原因、独居、寻求专业支持、服用焦虑和/或抑郁药物、使用更多悲伤服务(电话或在线支持)和更多对抗性应对策略,以及更高水平的抑郁和焦虑。使用机器学习技术,CatBoost 算法提供了 TGI-SR 得分的最佳预测模型(r=0.6479)。影响 PGD 症状水平的三个主要变量是焦虑,以及使用的回避和对抗性应对策略的水平。
在悲伤研究领域,这种开创性的方法使我们能够利用大流行期间收集的大量数据集,更深入地了解影响在此期间经历丧失的个体悲伤过程的主要因素。
本研究承认存在自我选择偏差、样本多样性有限,并表明需要进一步研究以充分了解 PGD 症状的预测因素。