Laboratory on Quantitative Medical Imaging, National Institute of Biomedical Imaging and Bioengineering, Bethesda, Maryland, USA.
Military Traumatic Brain Injury Initiative (MTBI2-formerly known as the Center for Neuroscience and Regenerative Medicine [CNRM]), Bethesda, Maryland, USA.
J Magn Reson Imaging. 2024 Nov;60(5):1853-1866. doi: 10.1002/jmri.29248. Epub 2024 Jan 30.
Quantitative magnetic resonance imaging (MRI) metrics could be used in personalized medicine to assess individuals against normative distributions. Conventional Zscore analysis is inadequate in the presence of non-Gaussian distributions. Therefore, if quantitative MRI metrics deviate from normality, an alternative is needed.
To confirm non-Gaussianity of diffusion MRI (dMRI) metrics on a publicly available dataset, and to propose a novel percentile-based method, "Pscore" to address this issue.
Retrospective cohort.
Nine hundred and sixty-one healthy young adults (age: 22-35 years, females: 53%) from the Human Connectome Project.
FIELD STRENGTH/SEQUENCE: 3-T, spin-echo diffusion echo-planar imaging, T1-weighted: MPRAGE.
The dMRI data were preprocessed using the TORTOISE pipeline. Forty-eight regions of interest (ROIs) from the JHU atlas were redrawn on a study-specific diffusion tensor (DT) template and average values were computed from various DT and mean apparent propagator (MAP) metrics. For each ROI, percentile ranks across participants were computed to generate "Pscores"-which normalized the difference between the median and a participant's value with the corresponding difference between the median and the 5th/95th percentile values.
ROI-wise distributions were assessed using log transformations, Zscore, and the "Pscore" methods. The percentages of extreme values above-95th and below-5th percentile boundaries (PEV(%), PEV(%)) were also assessed in the overall white matter. Bootstrapping was performed to test the reliability of Pscores in small samples (N = 100) using 100 iterations.
The dMRI metric distributions were systematically non-Gaussian, including positively skewed (eg, mean and radial diffusivity) and negatively skewed (eg, fractional and propagator anisotropy) metrics. This resulted in unbalanced tails in Zscore distributions (PEV ≠ 5%, PEV ≠ 5%) whereas "Pscore" distributions were symmetric and balanced (PEV = PEV = 5%); even for small bootstrapped samples (average [SD]).
The inherent skewness observed for dMRI metrics may preclude the use of conventional Zscore analysis. The proposed "Pscore" method may help estimating individual deviations more accurately in skewed normative data, even from small datasets.
1 TECHNICAL EFFICACY: Stage 1.
定量磁共振成像(MRI)指标可用于个性化医疗,以针对正态分布对个体进行评估。在存在非高斯分布的情况下,常规 Z 分数分析是不充分的。因此,如果定量 MRI 指标偏离正态分布,则需要替代方法。
在公开数据集上确认扩散 MRI(dMRI)指标的非高斯性,并提出一种新的基于百分位数的方法“Pscore”来解决此问题。
回顾性队列。
来自人类连接组计划的 961 名健康年轻成年人(年龄:22-35 岁,女性:53%)。
磁场强度/序列:3-T,自旋回波扩散回波平面成像,T1 加权:MPRAGE。
使用 TORTOISE 管道对 dMRI 数据进行预处理。在研究特定的扩散张量(DT)模板上重新绘制 JHU 图谱的 48 个感兴趣区(ROI),并从各种 DT 和平均表观扩散系数(MAP)指标中计算平均值。对于每个 ROI,计算参与者之间的百分位等级以生成“Pscore”-该分数将中位数与参与者值之间的差异与中位数与第 5/95 百分位值之间的差异进行归一化。
使用对数变换、Z 分数和“Pscore”方法评估 ROI 分布。还评估了整个白质中超过第 95 百分位和低于第 5 百分位边界的极端值百分比(PEV(%),PEV(%))。使用 100 次迭代的 100 次重复进行了引导以测试小样本(N=100)中 Pscore 的可靠性。
dMRI 指标分布系统地呈非高斯分布,包括正偏态(例如,均值和径向扩散系数)和负偏态(例如,分数和扩散系数各向异性)指标。这导致 Z 分数分布的不平衡尾端(PEV≠5%,PEV≠5%),而“Pscore”分布是对称和平衡的(PEV=PEV=5%);即使是小的引导样本(平均[SD])也是如此。
dMRI 指标观察到的固有偏度可能排除了常规 Z 分数分析的使用。所提出的“Pscore”方法可以帮助在偏态正态数据中更准确地估计个体偏差,即使来自小数据集也是如此。
1 技术功效:第 1 阶段。