Yue Liang, Su Yong-Liang, Li Mingzhe, Yu Luxia, Sun Xiaohao, Cho Jaehyun, Brettmann Blair, Gutekunst Will R, Ramprasad Rampi, Qi H Jerry
The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Adv Mater. 2024 Aug;36(34):e2310040. doi: 10.1002/adma.202310040. Epub 2024 Feb 7.
Digital Light Processing (DLP) is a vat photopolymerization-based 3D printing technology that fabricates parts typically made of chemically crosslinked polymers. The rapidly growing DLP market has an increasing demand for polymer raw materials, along with growing environmental concerns. Therefore, circular DLP printing with a closed-loop recyclable ink is of great importance for sustainability. The low-ceiling temperature alkyl-substituted δ-valerolactone (VL) is an industrially accessible biorenewable feedstock for developing recyclable polymers. In this work, acrylate-functionalized poly(δ-valerolactone) (PVLA), synthesized through the ring-opening transesterification polymerization of VL, is used as a platform photoprecursor to improve the chemical circularity in DLP printing. A small portion of photocurable reactive diluent (RD) turns the unprintable PVLA into DLP printable ink. Various photocurable monomers can serve as RDs to modulate the properties of printed structures for applications like sacrificial molds, soft actuators, sensors, etc. The intrinsic depolymerizability of PVLA is well preserved, regardless of whether the printed polymer is a thermoplastic or thermoset. The recovery yield of virgin quality VL monomer is 93% through direct bulk thermolysis of the printed structures. This work proposes the utilization of depolymerizable photoprecursors and highlights the feasibility of biorenewable VL as a versatile material platform toward circular DLP printing.
数字光处理(DLP)是一种基于光固化成型的3D打印技术,用于制造通常由化学交联聚合物制成的部件。随着DLP市场的快速增长,对聚合物原材料的需求不断增加,同时环境问题也日益受到关注。因此,使用闭环可回收油墨进行循环DLP打印对于可持续发展至关重要。低天花板温度的烷基取代δ-戊内酯(VL)是一种工业上可获取的生物可再生原料,用于开发可回收聚合物。在这项工作中,通过VL的开环酯交换聚合合成的丙烯酸酯官能化聚(δ-戊内酯)(PVLA)被用作平台光前驱体,以提高DLP打印中的化学循环性。一小部分光固化反应性稀释剂(RD)将不可打印的PVLA转化为DLP可打印油墨。各种光固化单体可以用作RD来调节印刷结构的性能,以用于牺牲模具、软致动器、传感器等应用。无论印刷聚合物是热塑性还是热固性,PVLA的固有解聚性都得到了很好的保留。通过对印刷结构进行直接本体热解,原始质量的VL单体的回收率为93%。这项工作提出了利用可解聚的光前驱体,并突出了生物可再生VL作为实现循环DLP打印的通用材料平台的可行性。