Cao Jianhua, Martin-Lorenzo Marta, van Kuijk Kim, Wieland Elias B, Gijbels Marion J, Claes Britt S R, Heredero Angeles, Aldamiz-Echevarria Gonzalo, Heeren Ron M A, Goossens Pieter, Sluimer Judith C, Balluff Benjamin, Alvarez-Llamas Gloria
Maastricht MultiModal Molecular Imaging institute, M4i, Maastricht University, the Netherlands (J.C., B.S.R.C., R.M.A.H., B.B.).
Immunology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain (M.M.-L., G.A.-L.).
Arterioscler Thromb Vasc Biol. 2024 Mar;44(3):741-754. doi: 10.1161/ATVBAHA.123.320278. Epub 2024 Feb 1.
The metabolic alterations occurring within the arterial architecture during atherosclerosis development remain poorly understood, let alone those particular to each arterial tunica. We aimed first to identify, in a spatially resolved manner, the specific metabolic changes in plaque, media, adventitia, and cardiac tissue between control and atherosclerotic murine aortas. Second, we assessed their translatability to human tissue and plasma for cardiovascular risk estimation.
In this observational study, mass spectrometry imaging (MSI) was applied to identify region-specific metabolic differences between atherosclerotic (n=11) and control (n=11) aortas from low-density lipoprotein receptor-deficient mice, via histology-guided virtual microdissection. Early and advanced plaques were compared within the same atherosclerotic animals. Progression metabolites were further analyzed by MSI in 9 human atherosclerotic carotids and by targeted mass spectrometry in human plasma from subjects with elective coronary artery bypass grafting (cardiovascular risk group, n=27) and a control group (n=27).
MSI identified 362 local metabolic alterations in atherosclerotic mice (log2 fold-change ≥1.5; ≤0.05). The lipid composition of cardiac tissue is altered during atherosclerosis development and presents a generalized accumulation of glycerophospholipids, except for lysolipids. Lysolipids (among other glycerophospholipids) were found at elevated levels in all 3 arterial layers of atherosclerotic aortas. LPC(18:0) (lysophosphatidylcholine; =0.024) and LPA(18:1) (lysophosphatidic acid; =0.025) were found to be significantly elevated in advanced plaques as compared with mouse-matched early plaques. Higher levels of both lipid species were also observed in fibrosis-rich areas of advanced- versus early-stage human samples. They were found to be significantly reduced in human plasma from subjects with elective coronary artery bypass grafting (<0.001 and =0.031, respectively), with LPC(18:0) showing significant association with cardiovascular risk (odds ratio, 0.479 [95% CI, 0.225-0.883]; =0.032) and diagnostic potential (area under the curve, 0.778 [95% CI, 0.638-0.917]).
An altered phospholipid metabolism occurs in atherosclerosis, affecting both the aorta and the adjacent heart tissue. Plaque-progression lipids LPC(18:0) and LPA(18:1), as identified by MSI on tissue, reflect cardiovascular risk in human plasma.
动脉粥样硬化发展过程中动脉结构内发生的代谢改变仍知之甚少,更不用说每个动脉膜层特有的代谢改变了。我们的目标首先是以空间分辨的方式确定对照小鼠和动脉粥样硬化小鼠主动脉中斑块、中膜、外膜和心脏组织的特定代谢变化。其次,我们评估了它们在人类组织和血浆中的可转移性,以用于心血管风险评估。
在这项观察性研究中,通过组织学引导的虚拟显微切割,应用质谱成像(MSI)来识别低密度脂蛋白受体缺陷小鼠的动脉粥样硬化主动脉(n = 11)和对照主动脉(n = 11)之间的区域特异性代谢差异。在同一动脉粥样硬化动物中比较早期和晚期斑块。通过MSI在9例人类动脉粥样硬化颈动脉中进一步分析进展代谢物,并通过靶向质谱法在接受择期冠状动脉搭桥术的受试者(心血管风险组,n = 27)和对照组(n = 27)的人类血浆中进行分析。
MSI识别出动脉粥样硬化小鼠中的362种局部代谢改变(log2倍变化≥1.5;≤0.05)。在动脉粥样硬化发展过程中,心脏组织的脂质组成发生改变,除溶血磷脂外,甘油磷脂普遍积累。在动脉粥样硬化主动脉的所有三层中均发现溶血磷脂(以及其他甘油磷脂)水平升高。与小鼠匹配早期斑块相比,晚期斑块中LPC(18:0)(溶血磷脂酰胆碱;=0.024)和LPA(18:1)(溶血磷脂酸;=0.025)显著升高。在晚期与早期人类样本的富含纤维化区域也观察到这两种脂质的水平较高。在接受择期冠状动脉搭桥术的受试者的人类血浆中发现它们显著降低(分别为<0.001和=0.031),LPC(18:0)与心血管风险显著相关(优势比,0.479 [95% CI,0.225 - 0.883];=0.032)并有诊断潜力(曲线下面积,0.778 [95% CI,0.638 - 0.917])。
动脉粥样硬化中发生磷脂代谢改变,影响主动脉和相邻心脏组织。通过组织MSI鉴定的斑块进展脂质LPC(18:0)和LPA(18:1)反映了人类血浆中的心血管风险。