Suppr超能文献

基于脑电图的自闭症谱系障碍识别:一项系统综述。

Identification of autism spectrum disorder based on electroencephalography: A systematic review.

作者信息

Li Jing, Kong Xiaoli, Sun Linlin, Chen Xu, Ouyang Gaoxiang, Li Xiaoli, Chen Shengyong

机构信息

School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.

Neuroscience Research Institute, Peking University, Beijing, 100191, China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Beijing, 100191, China.

出版信息

Comput Biol Med. 2024 Mar;170:108075. doi: 10.1016/j.compbiomed.2024.108075. Epub 2024 Jan 29.

Abstract

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by difficulties in social communication and repetitive and stereotyped behaviors. According to the World Health Organization, about 1 in 100 children worldwide has autism. With the global prevalence of ASD, timely and accurate diagnosis has been essential in enhancing the intervention effectiveness for ASD children. Traditional ASD diagnostic methods rely on clinical observations and behavioral assessment, with the disadvantages of time-consuming and lack of objective biological indicators. Therefore, automated diagnostic methods based on machine learning and deep learning technologies have emerged and become significant since they can achieve more objective, efficient, and accurate ASD diagnosis. Electroencephalography (EEG) is an electrophysiological monitoring method that records changes in brain spontaneous potential activity, which is of great significance for identifying ASD children. By analyzing EEG data, it is possible to detect abnormal synchronous neuronal activity of ASD children. This paper gives a comprehensive review of the EEG-based ASD identification using traditional machine learning methods and deep learning approaches, including their merits and potential pitfalls. Additionally, it highlights the challenges and the opportunities ahead in search of more effective and efficient methods to automatically diagnose autism based on EEG signals, which aims to facilitate automated ASD identification.

摘要

自闭症谱系障碍(ASD)是一种神经发育障碍,其特征在于社交沟通困难以及重复和刻板行为。根据世界卫生组织的数据,全球约每100名儿童中就有1名患有自闭症。随着ASD在全球的患病率上升,及时准确的诊断对于提高ASD儿童的干预效果至关重要。传统的ASD诊断方法依赖于临床观察和行为评估,存在耗时且缺乏客观生物学指标的缺点。因此,基于机器学习和深度学习技术的自动化诊断方法应运而生,并变得至关重要,因为它们可以实现更客观、高效和准确的ASD诊断。脑电图(EEG)是一种电生理监测方法,用于记录大脑自发电位活动的变化,这对于识别ASD儿童具有重要意义。通过分析EEG数据,可以检测ASD儿童异常的同步神经元活动。本文全面综述了使用传统机器学习方法和深度学习方法基于EEG的ASD识别,包括它们的优点和潜在陷阱。此外,它突出了在寻找基于EEG信号自动诊断自闭症的更有效和高效方法方面面临的挑战和机遇,旨在促进ASD的自动识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验