Suppr超能文献

通过双通道死亡策略的缺陷工程来调整可生物降解纳米酶的结构-活性关系,用于肿瘤治疗。

Defect engineering to tailor structure-activity relationship in biodegradable nanozymes for tumor therapy by dual-channel death strategies.

机构信息

School of Chemistry and Chemical Engineering, MOE Key Laboratory of High Performance Polymer Materials and Technology, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou 510120, China.

National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210046, China.

出版信息

J Control Release. 2024 Mar;367:557-571. doi: 10.1016/j.jconrel.2024.01.066. Epub 2024 Feb 3.

Abstract

Pursuing biodegradable nanozymes capable of equipping structure-activity relationship provides new perspectives for tumor-specific therapy. A rapidly degradable nanozymes can address biosecurity concerns. However, it may also reduce the functional stability required for sustaining therapeutic activity. Herein, the defect engineering strategy is employed to fabricate Pt-doping MoO (PMO) redox nanozymes with rapidly degradable characteristics, and then the PLGA-assembled PMO (PLGA@PMO) by microfluidics chip can settle the conflict between sustaining therapeutic activity and rapid degradability. Density functional theory describes that Pt-doping enables PMO nanozymes to exhibit an excellent multienzyme-mimicking catalytic activity originating from synergistic catalysis center construction with the interaction of Pt substitution and oxygen vacancy defects. The peroxidase- (POD), oxidase- (OXD), glutathione peroxidase- (GSH-Px), and catalase- (CAT) mimicking activities can induce robust ROS output and endogenous glutathione depletion under tumor microenvironment (TME) response, thereby causing ferroptosis in tumor cells by the accumulation of lipid peroxide and inactivation of glutathione peroxidase 4. Due to the activated surface plasmon resonance effect, the PMO nanozymes can cause hyperthermia-induced apoptosis through 1064 nm laser irradiation, and augment multienzyme-mimicking catalytic activity. This work represents a potential biological application for the development of therapeutic strategy for dual-channel death via hyperthermia-augmented enzyme-mimicking nanocatalytic therapy.

摘要

探索具有结构-活性关系的可生物降解纳米酶为肿瘤特异性治疗提供了新的视角。可快速降解的纳米酶可以解决生物安全性问题。然而,这也可能降低维持治疗活性所需的功能稳定性。在此,采用缺陷工程策略制备具有快速降解特性的 Pt 掺杂 MoO(PMO)氧化还原纳米酶,然后通过微流控芯片将 PLGA 组装的 PMO(PLGA@PMO),以解决维持治疗活性和快速降解性之间的冲突。密度泛函理论描述了 Pt 掺杂使 PMO 纳米酶具有优异的多酶模拟催化活性,源于协同催化中心构建与 Pt 取代和氧空位缺陷相互作用的协同催化中心构建。过氧化物酶(POD)、氧化酶(OXD)、谷胱甘肽过氧化物酶(GSH-Px)和过氧化氢酶(CAT)模拟活性可以在肿瘤微环境(TME)响应下诱导强烈的 ROS 输出和内源性谷胱甘肽耗竭,从而通过脂质过氧化物的积累和谷胱甘肽过氧化物酶 4 的失活导致肿瘤细胞发生铁死亡。由于激活的表面等离子体共振效应,PMO 纳米酶可以通过 1064nm 激光照射引起热诱导凋亡,并增强多酶模拟催化活性。这项工作代表了通过热增强酶模拟纳米催化治疗实现双通道死亡治疗策略发展的潜在生物学应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验