Suppr超能文献

基于多源域自适应的跨被试肌电控制模型稳健实时标定框架。

A Robust and Real-Time Framework of Cross-Subject Myoelectric Control Model Calibration via Multi-Source Domain Adaptation.

出版信息

IEEE J Biomed Health Inform. 2024 Mar;28(3):1363-1373. doi: 10.1109/JBHI.2024.3354909. Epub 2024 Mar 6.

Abstract

Surface electromyogram (sEMG) has been widely used in hand gesture recognition. However, most previous studies focused on user-personalized models, which require a great amount of data from each new target user to learn the user-specific EMG patterns. In this work, we present a novel real-time gesture recognition framework based on multi-source domain adaptation, which learns extra knowledge from the data of other users, thereby reducing the data collection burdens on the target user. Additionally, compared with conventional domain adaptation methods which treat data from all users in the source domain as a whole, the proposed multi-source method treat data from different users as multiple separate source domains. Therefore, more detailed statistical information on the data distribution from each user can be learned effectively. High-density sEMG (256 channels) from 20 subjects was used to validate the proposed method. Importantly, we evaluated our method with a simulated real-time processing pipeline on continuous sEMG data stream, rather than well-segmented data. The false alarm rate during rest periods in an EMG data stream, which is typically neglected by previous studies performing offline analyses, was also considered. Our results showed that, with only 1 s sEMG data per gesture from the new user, the 10-gesture classification accuracy reached 87.66 % but the false alarm rate was reduced to 1.95 %. Our method can reduce the frustratingly heavy data collection burdens on each new user.

摘要

表面肌电图 (sEMG) 在手势识别中得到了广泛应用。然而,之前的大多数研究都集中在用户个性化模型上,这些模型需要从每个新目标用户那里收集大量数据来学习用户特定的 EMG 模式。在这项工作中,我们提出了一种基于多源域自适应的实时手势识别框架,它可以从其他用户的数据中学习额外的知识,从而减轻目标用户的数据收集负担。此外,与传统的将源域中所有用户的数据视为一个整体的域自适应方法相比,所提出的多源方法将来自不同用户的数据视为多个单独的源域。因此,可以有效地学习每个用户数据分布的更详细的统计信息。使用 20 名受试者的高密度 sEMG(256 通道)来验证所提出的方法。重要的是,我们在连续 sEMG 数据流上使用模拟实时处理管道来评估我们的方法,而不是在分段良好的数据上进行评估。我们还考虑了之前进行离线分析的研究通常忽略的在 EMG 数据流中休息期间的假警报率。我们的结果表明,对于新用户,每个手势只需 1 秒 sEMG 数据,10 手势分类准确率即可达到 87.66%,但假警报率降低到 1.95%。我们的方法可以减轻每个新用户令人沮丧的繁重的数据收集负担。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验