General Research Laboratory, Kiku-Masamune Sake Brewing Co. Ltd., 1-8-6 Uozaki-nishimachi, Higashinada-ku, Kobe, Hyogo 658-0026, Japan.
General Research Laboratory, Kiku-Masamune Sake Brewing Co. Ltd., 1-8-6 Uozaki-nishimachi, Higashinada-ku, Kobe, Hyogo 658-0026, Japan.
J Biosci Bioeng. 2024 Apr;137(4):268-273. doi: 10.1016/j.jbiosc.2024.01.004. Epub 2024 Feb 3.
Hineka is a type of off-flavor of sake and is attributed to the presence of several compounds, including a major one called dimethyl trisulfide (DMTS). The production of the main precursor of DMTS involves yeast methionine salvage pathway. The DMTS-producing potential (DMTS-pp) of sake brewed using the Km67 strain, a non-Kyokai sake yeast, is lower than that of sake brewed using Kyokai yeast; however, the detailed mechanism is unclear. We focused on S-adenosyl-methionine (SAM) and aimed to elucidate the mechanism that prevents DMTS production in sake brewed using the Km67 strain. We revealed that SAM is involved in DMTS production in sake, and that the conversion of SAM to the DMTS precursor occurs through an enzymatic reaction rather than a chemical reaction. Based on previous reports on ADO1 and MDE1 genes, sake brewing tests were performed using the Km67 Δmde1, Δado1, and Δmde1Δado1 strains. A comparison of the SAM content of pressed sake cakes and DMTS-pp of sake produced using the Km67 Δado1 strain showed an increase in both SAM content and DMTS-pp compared to those produced using the parent strain. However, the Km67 Δmde1Δado1 strain showed little increase in DMTS-pp compared to the Km67 Δmde1 strain, despite an increase in SAM content. These results suggest that SAM accumulation in yeast plays a role in the production of DMTS in sake through the methionine salvage pathway. Moreover, the low SAM-accumulation characteristic of the Km67 strain contributes to low DMTS production in sake.
响乃一是清酒的一种异味,归因于多种化合物的存在,其中一种主要化合物称为二甲基三硫(DMTS)。DMTS 的主要前体的产生涉及酵母蛋氨酸补救途径。使用非协和酵母 Km67 酿造的清酒的 DMTS 产生潜力(DMTS-pp)低于使用协和酵母酿造的清酒;然而,其详细机制尚不清楚。我们专注于 S-腺苷甲硫氨酸(SAM),旨在阐明防止 Km67 菌株酿造的清酒中产生 DMTS 的机制。我们揭示了 SAM 参与了清酒中的 DMTS 产生,并且 SAM 转化为 DMTS 前体是通过酶促反应而不是化学反应发生的。基于先前关于 ADO1 和 MDE1 基因的报告,使用 Km67Δmde1、Δado1 和 Km67Δmde1Δado1 菌株进行了清酒酿造试验。与亲本菌株相比,Km67Δado1 菌株酿造的压榨清酒饼中的 SAM 含量和清酒的 DMTS-pp 都有所增加。然而,与 Km67Δmde1 菌株相比,Km67Δmde1Δado1 菌株的 DMTS-pp 增加很少,尽管 SAM 含量增加。这些结果表明,酵母中 SAM 的积累通过蛋氨酸补救途径在清酒中 DMTS 的产生中发挥作用。此外,Km67 菌株的低 SAM 积累特性有助于清酒中 DMTS 的低产量。