Adaan-Nyiak Moses A, Alam Intekhab, Jossou Ericmoore, Hwang Sooyeon, Kisslinger Kim, Gill Simerjeet K, Tiamiyu Ahmed A
Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
Nuclear Science and Technology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
Small. 2024 Jul;20(27):e2309631. doi: 10.1002/smll.202309631. Epub 2024 Feb 5.
Grain growth is prevalent in nanocrystalline (NC) materials at low homologous temperatures. Solute element addition is used to offset excess energy that drives coarsening at grain boundaries (GBs), albeit mostly for simple binary alloys. This thermodynamic approach is considered complicated in multi-component alloy systems due to complex pairwise interactions among alloying elements. Guided by empirical and GB-segregation enthalpy considerations for binary-alloy systems, a novel alloy design strategy, the "pseudo-binary thermodynamic" approach, for stabilizing NC-high entropy alloys (HEAs) and other multi-component-alloy variants is proposed. Using AlCoCrFe as a model-HEA to validate this approach, Zr, Sc, and Hf, are identified as the preferred solutes that would segregate to HEA-GBs to stabilize it against growth. Using Zr, NC-AlCoCrFe HEAs with minor additions of Zr are synthesized, followed by annealing up to 1123 K. Using advanced characterization techniques- in situ X-ray diffraction (XRD), scanning/transmission electron microscopy (S/TEM), and atom probe tomography, nanograin stability due to coupling self-stabilization and solute-GB segregation effects is reported in HEAs up to substantially high temperatures. The self-stabilization effect originates from the preferential GB-segregation of constituent HEA-elements that stabilizes NC-AlCoCrFe up to 0.5T (T-melting temperature). Meanwhile, solute-GB segregation originates from Zr segregation to NC-AlCoCrFe GBs; this results in further stabilization of the phase and grain-size (≈14 nm) up to ≈0.58 and ≈0.64T, respectively.
在低同源温度下,纳米晶(NC)材料中普遍存在晶粒生长现象。添加溶质元素用于抵消驱动晶界(GBs)粗化的多余能量,不过这主要是针对简单的二元合金而言。由于合金元素之间存在复杂的成对相互作用,这种热力学方法在多组分合金体系中被认为较为复杂。基于二元合金体系的经验和晶界偏析焓的考虑,提出了一种用于稳定NC高熵合金(HEAs)及其他多组分合金变体的新型合金设计策略,即“伪二元热力学”方法。以AlCoCrFe作为模型高熵合金来验证该方法,确定Zr、Sc和Hf为优先溶质,它们会偏析到高熵合金晶界以稳定其结构防止生长。使用Zr合成了少量添加Zr的NC-AlCoCrFe高熵合金,随后在高达1123 K的温度下进行退火。利用先进的表征技术——原位X射线衍射(XRD)、扫描/透射电子显微镜(S/TEM)和原子探针断层扫描,报道了在高达相当高温度的高熵合金中,由于耦合自稳定和溶质-晶界偏析效应而产生的纳米晶粒稳定性。自稳定效应源于构成高熵合金的元素优先在晶界偏析,这使得NC-AlCoCrFe在高达0.5T(T为熔化温度)时保持稳定。同时,溶质-晶界偏析源于Zr偏析到NC-AlCoCrFe晶界;这分别导致该相和晶粒尺寸(≈14 nm)在高达≈0.58T和≈0.64T时进一步稳定。