Suppr超能文献

关于覆盖物对埃塞俄比亚贡德尔地区中部西登比亚区西瓜(Thunb.)品种生长和果实产量影响的数据。

Data on effect of mulches on growth and fruit yield of watermelon ( Thunb.) varieties in west Dembia district, central Gondar zone, Ethiopia.

作者信息

Yismaw Getahun, Fantaw Solomon, Ayalew Asrat

机构信息

Department of Horticulture, College of Agriculture and Environmental Sciences, University of Gondar, Gondar, Ethiopia.

出版信息

Data Brief. 2024 Jan 17;53:110071. doi: 10.1016/j.dib.2024.110071. eCollection 2024 Apr.

Abstract

Watermelon is an important horticultural crop which is grown in warm climate worldwide. However, its production and productivity is low owing to lack of high yielding improved varieties and poor knowledge of using mulches. Therefore, a field experiment was conducted in west Dembia district under irrigation from January to April 2021 to investigate the effect of mulches on growth and fruit yield of watermelon varieties. Factorial combinations of two varieties of watermelon (Crimson Sweet and Sugar Baby) and four types of mulches (black plastic, white plastic, grass mulch and no mulch as control) were arranged in a randomized complete block design with three replications. The remaining necessary agronomic practices and crop management activities were undertaken uniformly. The data presented under this dataset article includes phenological parameters (i.e. Days to 50 % germination, Days to 50 % flowering, and Days to 50 % maturity), growth parameters (i.e. main vine length, number of lateral branches per vine, number of nodes on main vine, and number of leaves on the main vine) and yield and yield component parameters (i.e. Number of total fruit plant, number of marketable fruit plant,number of unmarketable fruit plant, fruit length, fruit diameter, average fruit weight, marketable fruit yield, unmarketable fruit yield and total fruit yield). All the collected data were subjected to analysis of variance (ANOVA) and the analysis was carried out using the SAS version 9.4 software computer program's General Linear Model (GLM) procedure [1]. As described in Montgomery [2], the residuals were examined to verify the normal distribution and homogeneous variance model assumptions on the error terms for each response variable. Because the eight treatment combinations were randomized within each block, the independence assumption is valid. When a treatment effect was significant, multiple means comparison was performed at a 5 % level of significance using the least significant difference (Fisher's LSD) method to generate letter groupings and correlation analysis was performed using the Pearson correlation procedure found in SAS. This dataset article, therefore gives information about the effects mulching on productivity of watermelon varieties. Additionally, it provides the appropriate and economically feasible type of mulching material for maximized fruit yield of watermelon varieties in the study area or other areas having similar agro ecology. Hence, this information can allow other researchers to review the supplement data, methods, and make detailed analysis, which possibly giving rise to new lines of inquiry. This can also give rise to new collaborations and boost the reputation of the present research data within the scientific community and to make it available to everyone around the subject matter to use as they wish.

摘要

西瓜是一种重要的园艺作物,在全球温暖气候地区广泛种植。然而,由于缺乏高产改良品种以及对覆盖物使用的了解不足,其产量和生产率较低。因此,于2021年1月至4月在西登比亚区进行了一项田间试验,以研究覆盖物对西瓜品种生长和果实产量的影响。两个西瓜品种(绯红甜心和甜心宝贝)和四种覆盖物类型(黑色塑料、白色塑料、草覆盖物以及不覆盖作为对照)的析因组合采用随机完全区组设计,重复三次。其余必要的农艺措施和作物管理活动均统一进行。本数据集文章中呈现的数据包括物候参数(即50%发芽天数、50%开花天数和50%成熟天数)、生长参数(即主蔓长度、每株藤蔓的侧枝数、主蔓上的节数以及主蔓上的叶片数)以及产量和产量构成参数(即每株总果实数、每株可销售果实数、每株不可销售果实数、果实长度、果实直径、平均果实重量、可销售果实产量、不可销售果实产量和总果实产量)。所有收集到的数据都进行了方差分析(ANOVA),分析使用SAS 9.4版软件计算机程序的通用线性模型(GLM)过程[1]。如蒙哥马利[2]所述,对残差进行检查,以验证每个响应变量误差项的正态分布和齐次方差模型假设。由于八个处理组合在每个区组内是随机排列的,独立性假设是有效的。当处理效应显著时,使用最小显著差数法(费舍尔最小显著差数法)在5%显著水平上进行多重均值比较以生成字母分组,并使用SAS中的皮尔逊相关程序进行相关分析。因此,本数据集文章给出了覆盖物对西瓜品种生产力影响的信息。此外,它还提供了适合且经济可行的覆盖材料类型,以实现研究区域或其他具有相似农业生态的地区西瓜品种果实产量最大化。因此,这些信息可以让其他研究人员查阅补充数据和方法,并进行详细分析,这可能会引发新的研究方向。这也可能促成新的合作,并提升本研究数据在科学界的声誉,使其可供围绕该主题的每个人根据自己的意愿使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e099/10837490/9c8c6cb1fe34/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验