Sun Libo, Dai Chencheng, Wang Tianjiao, Jin Xindie, Xu Zhichuan J, Wang Xin
Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, P. R. China.
Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore, 138602, Singapore.
Angew Chem Int Ed Engl. 2024 Apr 8;63(15):e202320027. doi: 10.1002/anie.202320027. Epub 2024 Feb 21.
Ammonia (NH) is pivotal in modern industry and represents a promising next-generation carbon-free energy carrier. Electrocatalytic nitrate reduction reaction (eNORR) presents viable solutions for NH production and removal of ambient nitrate pollutants. However, the development of eNORR is hindered by lacking the efficient electrocatalysts. To address this challenge, we synthesized a series of macrocyclic molecular catalysts for the heterogeneous eNORR. These materials possess different coordination environments around metal centers by surrounding subunits. Consequently, electronic structures of the active centers can be altered, enabling tunable activity towards eNORR. Our investigation reveals that metal center with an N(pyrrole)-N(pyridine) configuration demonstrates superior activity over the others and achieves a high NH Faradaic efficiency (FE) of over 90 % within the tested range, where the highest FE of approximately 94 % is obtained. Furthermore, it achieves a production rate of 11.28 mg mg h, and a turnover frequency of up to 3.28 s. Further tests disclose that these molecular catalysts with diverse coordination environments showed different magnetic moments. Theoretical calculation results indicate that variated coordination environments can result in a d-band center variation which eventually affects rate-determining step energy and calculated magnetic moments, thus establishing a correlation between electronic structure, experimental activity, and computational parameters.
氨(NH₃)在现代工业中至关重要,是一种很有前景的下一代无碳能源载体。电催化硝酸盐还原反应(eNORR)为氨的生产和去除环境中的硝酸盐污染物提供了可行的解决方案。然而,缺乏高效的电催化剂阻碍了eNORR的发展。为应对这一挑战,我们合成了一系列用于非均相eNORR的大环分子催化剂。这些材料通过围绕亚基在金属中心周围具有不同的配位环境。因此,可以改变活性中心的电子结构,实现对eNORR的可调活性。我们的研究表明,具有N(吡咯)-N(吡啶)构型的金属中心表现出优于其他中心的活性,在测试范围内实现了超过90%的高氨法拉第效率(FE),其中获得了约94%的最高FE。此外,它实现了11.28 mg mg⁻¹ h⁻¹的产率和高达3.28 s⁻¹的周转频率。进一步的测试表明,这些具有不同配位环境的分子催化剂表现出不同的磁矩。理论计算结果表明,变化的配位环境会导致d带中心变化,最终影响速率决定步骤的能量和计算出的磁矩,从而建立了电子结构、实验活性和计算参数之间的相关性。