Suppr超能文献

受蝴蝶翅膀鳞片启发的具有各向异性润湿性表面的双光子聚合

Two-Photon Polymerization of Butterfly Wing Scale Inspired Surfaces with Anisotropic Wettability.

作者信息

Ren Zefu, Yang Zhuoyuan, Srinivasaraghavan Govindarajan Rishikesh, Madiyar Foram, Cheng Meng, Kim Daewon, Jiang Yizhou

机构信息

Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114, United States.

Department of Physical Science, Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114, United States.

出版信息

ACS Appl Mater Interfaces. 2024 Feb 21;16(7):9362-9370. doi: 10.1021/acsami.3c14765. Epub 2024 Feb 7.

Abstract

Wings of Morph aega butterflies are natural surfaces that exhibit anisotropic liquid wettability. The direction-dependent arrangement of the wing scales creates orientation-turnable microstructures with two distinct contact modes for liquid droplets. Enabled by recent developments in additive manufacturing, such natural surface designs coupled with hydrophobicity play a crucial role in applications such as self-cleaning, anti-icing, and fluidic manipulation. However, the interplay among resolution, architecture, and performance of bioinspired structures is barely achieved. Herein, inspired by the wing scales of the Morpho aega butterfly, full-scale synthetic surfaces with anisotropic wettability fabricated by two-photon polymerization are reported. The quality of the artificial butterfly scale is improved by optimizing the laser scanning strategy and the objective lens movement path. The corresponding contact angles of water on the fabricated architecture with various design parameters are measured, and the anisotropic fluidic wettability is investigated. Results demonstrate that tuning the geometrical parameters and spatial arrangement of the artificial wing scales enables anisotropic behaviors of the droplet's motion. The measured results also indicate a reverse phenomenon of the fabricated surfaces in contrast to their natural counterparts, possibly attributed to the significant difference in equilibrium wettability between the fabricated microstructures and the natural Morpho aega surface. These findings are utilized to design next-generation fluid-controllable interfaces for manipulating liquid mobility on synthetic surfaces.

摘要

大闪蝶(Morpho aega)翅膀是呈现各向异性液体润湿性的天然表面。翅膀鳞片的方向依赖性排列产生了具有两种不同液滴接触模式的可定向转动微结构。受增材制造最新进展的推动,这种结合了疏水性的天然表面设计在自清洁、防冰和流体操控等应用中发挥着关键作用。然而,仿生结构的分辨率、结构和性能之间的相互作用却很难实现。在此,受大闪蝶翅膀鳞片的启发,报道了通过双光子聚合制造的具有各向异性润湿性的全尺寸合成表面。通过优化激光扫描策略和物镜移动路径,提高了人造蝴蝶鳞片的质量。测量了具有各种设计参数的制造结构上的水的相应接触角,并研究了各向异性流体润湿性。结果表明,调整人造翅膀鳞片的几何参数和空间排列能够实现液滴运动的各向异性行为。测量结果还表明,与天然对应物相比,制造表面存在反向现象,这可能归因于制造的微结构与天然大闪蝶表面之间平衡润湿性的显著差异。这些发现被用于设计下一代流体可控界面,以操控合成表面上的液体流动性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验