College of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China.
Phys Med Biol. 2024 Mar 13;69(6). doi: 10.1088/1361-6560/ad2715.
. In the field of medicine, semi-supervised segmentation algorithms hold crucial research significance while also facing substantial challenges, primarily due to the extreme scarcity of expert-level annotated medical image data. However, many existing semi-supervised methods still process labeled and unlabeled data in inconsistent ways, which can lead to knowledge learned from labeled data being discarded to some extent. This not only lacks a variety of perturbations to explore potential robust information in unlabeled data but also ignores the confirmation bias and class imbalance issues in pseudo-labeling methods.. To solve these problems, this paper proposes a semi-supervised medical image segmentation method 'mixup-decoupling training (MDT)' that combines the idea of consistency and pseudo-labeling. Firstly, MDT introduces a new perturbation strategy 'mixup-decoupling' to fully regularize training data. It not only mixes labeled and unlabeled data at the data level but also performs decoupling operations between the output predictions of mixed target data and labeled data at the feature level to obtain strong version predictions of unlabeled data. Then it establishes a dual learning paradigm based on consistency and pseudo-labeling. Secondly, MDT employs a novel categorical entropy filtering approach to pick high-confidence pseudo-labels for unlabeled data, facilitating more refined supervision.. This paper compares MDT with other advanced semi-supervised methods on 2D and 3D datasets separately. A large number of experimental results show that MDT achieves competitive segmentation performance and outperforms other state-of-the-art semi-supervised segmentation methods.. This paper proposes a semi-supervised medical image segmentation method MDT, which greatly reduces the demand for manually labeled data and eases the difficulty of data annotation to a great extent. In addition, MDT not only outperforms many advanced semi-supervised image segmentation methods in quantitative and qualitative experimental results, but also provides a new and developable idea for semi-supervised learning and computer-aided diagnosis technology research.
. 在医学领域,半监督分割算法具有重要的研究意义,但也面临着巨大的挑战,主要是因为专家级标注的医学图像数据极其稀缺。然而,许多现有的半监督方法仍然以不一致的方式处理有标签和无标签的数据,这可能导致从有标签数据中学到的知识在某种程度上被丢弃。这不仅缺乏各种扰动来探索无标签数据中的潜在稳健信息,而且忽略了伪标签方法中的确认偏差和类不平衡问题。. 为了解决这些问题,本文提出了一种半监督医学图像分割方法“混合分离训练(MDT)”,该方法结合了一致性和伪标签的思想。首先,MDT 引入了一种新的扰动策略“混合分离”,以充分正则化训练数据。它不仅在数据级别上混合有标签和无标签数据,而且在特征级别上对混合目标数据的输出预测与有标签数据进行分离操作,从而获得无标签数据的强版本预测。然后,它基于一致性和伪标签建立了一个对偶学习范例。其次,MDT 采用了一种新颖的类别熵过滤方法,为无标签数据选择高置信度的伪标签,从而实现更精细的监督。. 本文分别在 2D 和 3D 数据集上对 MDT 与其他先进的半监督方法进行了比较。大量实验结果表明,MDT 实现了具有竞争力的分割性能,优于其他先进的半监督分割方法。. 本文提出了一种半监督医学图像分割方法 MDT,大大降低了对半监督学习和计算机辅助诊断技术研究对人工标注数据的需求,极大地减轻了数据标注的难度。此外,MDT 不仅在定量和定性实验结果上优于许多先进的半监督图像分割方法,而且为半监督学习和计算机辅助诊断技术研究提供了一个新的和有发展潜力的思路。
Phys Med Biol. 2024-3-13
Med Image Anal. 2024-5
Biomed Phys Eng Express. 2025-8-6
IEEE J Biomed Health Inform. 2025-8
IEEE Trans Med Imaging. 2025-7