Suppr超能文献

优化复杂蛋白质组胰蛋白酶消化的条件:从批量样品到单细胞。

Optimal conditions for carrying out trypsin digestions on complex proteomes: From bulk samples to single cells.

机构信息

Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA.

Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA.

出版信息

J Proteomics. 2024 Apr 15;297:105109. doi: 10.1016/j.jprot.2024.105109. Epub 2024 Feb 5.

Abstract

To identify proteins by the bottom-up mass spectrometry workflow, enzymatic digestion is essential to break down proteins into smaller peptides amenable to both chromatographic separation and mass spectrometric analysis. Trypsin is the most extensively used protease due to its high cleavage specificity and generation of peptides with desirable positively charged N- and C-terminal amino acid residues that are amenable to reverse phase HPLC separation and MS/MS analyses. However, trypsin can yield variable digestion profiles and its protein cleavage activity is interdependent on trypsin source and quality, digestion time and temperature, pH, denaturant, trypsin and substrate concentrations, composition/complexity of the sample matrix, and other factors. There is therefore a need for a more standardized, general-purpose trypsin digestion protocol. Based on a review of the literature we delineate optimal conditions for carrying out trypsin digestions of complex proteomes from bulk samples to limiting amounts of protein extracts. Furthermore, we highlight recent developments and technological advances used in digestion protocols to quantify complex proteomes from single cells. SIGNIFICANCE: Currently, bottom-up MS-based proteomics is the method of choice for global proteome analysis. Since trypsin is the most utilized protease in bottom-up MS proteomics, delineating optimal conditions for carrying out trypsin digestions of complex proteomes in samples ranging from tissues to single cells should positively impact a broad range of biomedical research.

摘要

为了通过自上而下的质谱工作流程鉴定蛋白质,酶解对于将蛋白质分解成更小的肽至关重要,这些肽适用于色谱分离和质谱分析。由于其高切割特异性以及产生具有理想正电荷 N-和 C-末端氨基酸残基的肽,胰蛋白酶是最广泛使用的蛋白酶,这些肽适用于反相 HPLC 分离和 MS/MS 分析。然而,胰蛋白酶的消化谱可能会有所不同,其蛋白质切割活性取决于胰蛋白酶的来源和质量、消化时间和温度、pH 值、变性剂、胰蛋白酶和底物浓度、样品基质的组成/复杂性以及其他因素。因此,需要一种更标准化、通用的胰蛋白酶消化方案。基于文献综述,我们描述了从大量样品到有限量蛋白质提取物中进行复杂蛋白质组胰蛋白酶消化的最佳条件。此外,我们还强调了用于从单细胞中定量复杂蛋白质组的消化方案中的最新进展和技术进步。意义:目前,基于自上而下的 MS 的蛋白质组学是进行全蛋白质组分析的首选方法。由于胰蛋白酶是自上而下的 MS 蛋白质组学中使用最广泛的蛋白酶,因此在从组织到单细胞的样品中进行复杂蛋白质组胰蛋白酶消化的最佳条件的描述应该会对广泛的生物医学研究产生积极影响。

相似文献

1
Optimal conditions for carrying out trypsin digestions on complex proteomes: From bulk samples to single cells.
J Proteomics. 2024 Apr 15;297:105109. doi: 10.1016/j.jprot.2024.105109. Epub 2024 Feb 5.
2
Pressurized pepsin digestion in proteomics: an automatable alternative to trypsin for integrated top-down bottom-up proteomics.
Mol Cell Proteomics. 2011 Feb;10(2):M110.001479. doi: 10.1074/mcp.M110.001479. Epub 2010 Jul 12.
3
Uncovering immobilized trypsin digestion features from large-scale proteome data generated by high-resolution mass spectrometry.
J Chromatogr A. 2014 Apr 11;1337:40-7. doi: 10.1016/j.chroma.2014.02.014. Epub 2014 Feb 22.
6
Why less is more when generating tryptic peptides in bottom-up proteomics.
Proteomics. 2014 Sep;14(17-18):2031-41. doi: 10.1002/pmic.201300479. Epub 2014 Aug 13.
7
Extended bottom-up proteomics with secreted aspartic protease Sap9.
J Proteomics. 2014 Oct 14;110:20-31. doi: 10.1016/j.jprot.2014.07.035. Epub 2014 Aug 11.
8
Expanding proteome coverage with orthogonal-specificity α-lytic proteases.
Mol Cell Proteomics. 2014 Mar;13(3):823-35. doi: 10.1074/mcp.M113.034710. Epub 2014 Jan 14.
9
Optimization of proteomics sample preparation for forensic analysis of skin samples.
J Proteomics. 2021 Oct 30;249:104360. doi: 10.1016/j.jprot.2021.104360. Epub 2021 Sep 1.
10
Evaluation of Serum Proteome Sample Preparation Methods to Support Clinical Proteomics Applications.
J Am Soc Mass Spectrom. 2024 Nov 6;35(11):2659-2669. doi: 10.1021/jasms.4c00131. Epub 2024 Sep 12.

引用本文的文献

本文引用的文献

2
Assessing the Role of Trypsin in Quantitative Plasma and Single-Cell Proteomics toward Clinical Application.
Anal Chem. 2023 Sep 12;95(36):13649-13658. doi: 10.1021/acs.analchem.3c02543. Epub 2023 Aug 28.
3
Data-Dependent Acquisition with Precursor Coisolation Improves Proteome Coverage and Measurement Throughput for Label-Free Single-Cell Proteomics.
Angew Chem Int Ed Engl. 2023 Aug 21;62(34):e202303415. doi: 10.1002/anie.202303415. Epub 2023 Jul 13.
4
Prioritized mass spectrometry increases the depth, sensitivity and data completeness of single-cell proteomics.
Nat Methods. 2023 May;20(5):714-722. doi: 10.1038/s41592-023-01830-1. Epub 2023 Apr 3.
5
Global detection of human variants and isoforms by deep proteome sequencing.
Nat Biotechnol. 2023 Dec;41(12):1776-1786. doi: 10.1038/s41587-023-01714-x. Epub 2023 Mar 23.
6
Robust and Easy-to-Use One-Pot Workflow for Label-Free Single-Cell Proteomics.
Anal Chem. 2023 Mar 7;95(9):4435-4445. doi: 10.1021/acs.analchem.2c05022. Epub 2023 Feb 20.
7
In Search of a Universal Method: A Comparative Survey of Bottom-Up Proteomics Sample Preparation Methods.
J Proteome Res. 2022 Oct 7;21(10):2397-2411. doi: 10.1021/acs.jproteome.2c00265. Epub 2022 Aug 25.
8
Investigation of Tryptic Protein Digestion in Microdroplets and in Bulk Solution.
J Am Soc Mass Spectrom. 2022 Jul 6;33(7):1238-1249. doi: 10.1021/jasms.2c00072. Epub 2022 Jun 1.
10
Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation.
Mol Syst Biol. 2022 Mar;18(3):e10798. doi: 10.15252/msb.202110798.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验