Laboratory of Bacterial Polysaccharides, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993.
W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205.
Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2315733121. doi: 10.1073/pnas.2315733121. Epub 2024 Feb 8.
is a fungal pathogen responsible for cryptococcosis and cryptococcal meningitis. The ' capsular polysaccharide and its shed exopolysaccharide function both as key virulence factors and to protect the fungal cell from phagocytosis. Currently, a glycoconjugate of these polysaccharides is being explored as a vaccine to protect against infection. In this study, NOE and -coupling values from NMR experiments were consistent with a converged structure of the synthetic decasaccharide, GXM10-Ac, calculated from MD simulations. GXM10-Ac was designed as an extension of glucuronoxylomannan (GXM) polysaccharide motif (M2) which is common in the clinically predominant serotype A strains and is recognized by protective forms of GXM-specific monoclonal antibodies. The M2 motif is a hexasaccharide with a three-residue α-mannan backbone, modified by β-(1→2)-xyloses (Xyl) on the first two mannoses (Man) and a β-(1→2)-glucuronic acid (GlcA) on the third Man. Combined NMR and MD analyses reveal that GXM10-Ac adopts an extended structure, with Xyl/GlcA branches alternating sides along the α-mannan backbone. -acetyl esters also alternate sides and are grouped in pairs. MD analysis of a twelve M2-repeating unit polymer supports the notion that the GXM10-Ac structure is uniformly represented throughout the polysaccharide. This derived GXM model displays high flexibility while maintaining a structural identity, yielding insights to further explore intermolecular interactions between polysaccharides, interactions with anti-GXM mAbs, and the cryptococcal polysaccharide architecture.
是一种真菌病原体,可导致隐球菌病和隐球菌性脑膜炎。“荚膜多糖及其脱落的胞外多糖都作为关键毒力因子,保护真菌细胞免受吞噬。目前,正在研究这些多糖的糖缀合物作为预防感染的疫苗。在这项研究中,NMR 实验中的 NOE 和耦合值与从头计算分子动力学模拟收敛结构的合成十糖 GXM10-Ac 一致。GXM10-Ac 是葡聚糖甘露聚糖 (GXM) 多糖基序 (M2) 的延伸,该基序在临床上占优势的 A 型血清型菌株中很常见,并且被保护性 GXM 特异性单克隆抗体识别。M2 基序是一个六糖,具有三个残基的α-甘露聚糖骨架,第一个和第二个甘露糖上有β-(1→2)-木糖 (Xyl) 修饰,第三个甘露糖上有β-(1→2)-葡萄糖醛酸 (GlcA)。NMR 和 MD 分析的结合表明,GXM10-Ac 采用扩展结构,Xyl/GlcA 分支沿α-甘露聚糖骨架交替排列。-乙酰酯也交替排列,并成组存在。十二重复单元聚合物的 MD 分析支持 GXM10-Ac 结构在整个多糖中均匀表示的观点。这种衍生的 GXM 模型显示出高度的灵活性,同时保持结构的一致性,为进一步探索多糖之间的分子间相互作用、与抗 GXM mAb 的相互作用以及隐球菌多糖结构提供了思路。