Amundsen Susan K, Smith Gerald R
Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Farview Avenue North, A1-162, Seattle, WA 98109, USA.
Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Farview Avenue North, A1-162, Seattle, WA 98109, USA.
J Mol Biol. 2024 Mar 15;436(6):168482. doi: 10.1016/j.jmb.2024.168482. Epub 2024 Feb 7.
Repair of broken DNA is essential for life; the reactions involved can also promote genetic recombination to aid evolution. In Escherichia coli, RecBCD enzyme is required for the major pathway of these events. RecBCD is a complex ATP-dependent DNA helicase with nuclease activity controlled by Chi recombination hotspots (5'-GCTGGTGG-3'). During rapid DNA unwinding, when Chi is in a RecC tunnel, RecB nuclease nicks DNA at Chi. Here, we test our signal transduction model - upon binding Chi (step 1), RecC signals RecD helicase to stop unwinding (step 2); RecD then signals RecB (step 3) to nick at Chi (step 4) and to begin loading RecA DNA strand-exchange protein (step 5). We discovered that ATP-γ-S, like the small molecule RecBCD inhibitor NSAC1003, causes RecBCD to nick DNA, independent of Chi, at novel positions determined by the DNA substrate length. Two RecB ATPase-site mutants nick at novel positions determined by their RecB:RecD helicase rate ratios. In each case, we find that nicking at the novel position requires steps 3 and 4 but not step 1 or 2, as shown by mutants altered at the intersubunit contacts specific for each step; nicking also requires RecD helicase and RecB nuclease activities. Thus, altering the RecB ATPase site, by small molecules or mutation, sensitizes RecD to signal RecB to nick DNA (steps 4 and 3, respecitvely) without the signal from RecC or Chi (steps 1 and 2). These new, enzymatic results strongly support the signal transduction model and provide a paradigm for studying other complex enzymes.
断裂DNA的修复对生命至关重要;所涉及的反应还能促进基因重组以推动进化。在大肠杆菌中,RecBCD酶是这些事件主要途径所必需的。RecBCD是一种复杂的ATP依赖性DNA解旋酶,其核酸酶活性受Chi重组热点(5'-GCTGGTGG-3')控制。在快速DNA解旋过程中,当Chi位于RecC通道时,RecB核酸酶在Chi处切割DNA。在此,我们测试我们的信号转导模型——在结合Chi后(步骤1),RecC向RecD解旋酶发出信号使其停止解旋(步骤2);然后RecD向RecB发出信号(步骤3)在Chi处切割(步骤4)并开始加载RecA DNA链交换蛋白(步骤5)。我们发现,ATP-γ-S与小分子RecBCD抑制剂NSAC1003一样,会导致RecBCD在由DNA底物长度决定的新位置切割DNA,而与Chi无关。两个RecB ATP酶位点突变体在由其RecB:RecD解旋酶速率比决定的新位置切割。在每种情况下,我们发现,在新位置切割需要步骤3和4,但不需要步骤1或2,这由针对每个步骤的亚基间接触发生改变的突变体所表明;切割还需要RecD解旋酶和RecB核酸酶活性。因此,通过小分子或突变改变RecB ATP酶位点,会使RecD敏感,从而在没有来自RecC或Chi的信号(步骤1和2)的情况下向RecB发出信号使其切割DNA(分别为步骤4和3)。这些新的酶学结果有力地支持了信号转导模型,并为研究其他复杂酶提供了一个范例。