Yang Ziping, Yang Qian, Liu Qi, Li Xiaolong, Wang Luli, Zhang Yanmei, Ke Zhi, Lu Zhiwei, Shen Huibang, Li Junfeng, Zhou Wenzhao
Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, 524091 Zhanjiang, Guangdong, China.
Wuhan Onemore-tech Co., Ltd, 430076 Wuhan, Hubei, China.
Hortic Res. 2023 Dec 19;11(2):uhad269. doi: 10.1093/hr/uhad269. eCollection 2024 Feb.
The subfamily Agavoideae comprises crassulacean acid metabolism (CAM), C3, and C4 plants with a young age of speciation and slower mutation accumulation, making it a model crop for studying CAM evolution. However, the genetic mechanism underlying CAM evolution remains unclear because of lacking genomic information. This study assembled the genome of NO.11648, a constitutive CAM plant belonging to subfamily Agavoideae, at the chromosome level using data generated from high-throughput chromosome conformation capture, Nanopore, and Illumina techniques, resulting in 30 pseudo-chromosomes with a size of 4.87 Gb and scaffold N of 186.42 Mb. The genome annotation revealed 58 841 protein-coding genes and 76.91% repetitive sequences, with the dominant repetitive sequences being the I-type repeats (Copia and Gypsy accounting for 18.34% and 13.5% of the genome, respectively). Our findings also provide support for a whole genome duplication event in the lineage leading to , which occurred after its divergence from subfamily Asparagoideae. Moreover, we identified a gene duplication event in the phosphoenolpyruvate carboxylase kinase () gene family and revealed that three genes ( and ) were involved in the CAM pathway. More importantly, we identified transcription factors enriched in the circadian rhythm, MAPK signaling, and plant hormone signal pathway that regulate the expression by analysing the transcriptome and using yeast one-hybrid assays. Our results shed light on CAM evolution and offer an essential resource for the molecular breeding program of spp.
龙舌兰亚科包含景天酸代谢(CAM)植物、C3植物和C4植物,其物种形成时间较近且突变积累较慢,使其成为研究CAM进化的模式作物。然而,由于缺乏基因组信息,CAM进化背后的遗传机制仍不清楚。本研究利用高通量染色体构象捕获、纳米孔和Illumina技术产生的数据,在染色体水平上组装了属于龙舌兰亚科的组成型CAM植物11648的基因组,得到了30条大小为4.87Gb的假染色体和186.42Mb的支架N。基因组注释显示有58841个蛋白质编码基因和76.91%的重复序列,其中占主导地位的重复序列是I型重复序列(Copia和Gypsy分别占基因组的18.34%和13.5%)。我们的研究结果还为导致[此处可能缺失物种名称]的谱系中的一次全基因组复制事件提供了支持,该事件发生在其与天门冬亚科分化之后。此外,我们在磷酸烯醇式丙酮酸羧化酶激酶([此处可能缺失基因名称])基因家族中鉴定出一次基因复制事件,并揭示三个[此处可能缺失基因名称]基因([此处可能缺失具体基因名称]和[此处可能缺失具体基因名称])参与了CAM途径。更重要的是,我们通过分析转录组并使用酵母单杂交试验,鉴定出在昼夜节律、MAPK信号传导和植物激素信号通路中富集的转录因子,这些转录因子调节[此处可能缺失基因名称]的表达。我们的结果为CAM进化提供了线索,并为[此处可能缺失物种名称]的分子育种计划提供了重要资源。