基于力学敏感基因识别腹主动脉瘤亚型。

Identification of abdominal aortic aneurysm subtypes based on mechanosensitive genes.

机构信息

Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.

National Health Commission Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China.

出版信息

PLoS One. 2024 Feb 9;19(2):e0296729. doi: 10.1371/journal.pone.0296729. eCollection 2024.

Abstract

BACKGROUND

Rupture of abdominal aortic aneurysm (rAAA) is a fatal event in the elderly. Elevated blood pressure and weakening of vessel wall strength are major risk factors for this devastating event. This present study examined whether the expression profile of mechanosensitive genes correlates with the phenotype and outcome, thus, serving as a biomarker for AAA development.

METHODS

In this study, we identified mechanosensitive genes involved in AAA development using general bioinformatics methods and machine learning with six human datasets publicly available from the GEO database. Differentially expressed mechanosensitive genes (DEMGs) in AAAs were identified by differential expression analysis. Molecular biological functions of genes were explored using functional clustering, Protein-protein interaction (PPI), and weighted gene co-expression network analysis (WGCNA). According to the datasets (GSE98278, GSE205071 and GSE165470), the changes of diameter and aortic wall strength of AAA induced by DEMGs were verified by consensus clustering analysis, machine learning models, and statistical analysis. In addition, a model for identifying AAA subtypes was built using machine learning methods.

RESULTS

38 DEMGs clustered in pathways regulating 'Smooth muscle cell biology' and 'Cell or Tissue connectivity'. By analyzing the GSE205071 and GSE165470 datasets, DEMGs were found to respond to differences in aneurysm diameter and vessel wall strength. Thus, in the merged datasets, we formally created subgroups of AAAs and found differences in immune characteristics between the subgroups. Finally, a model that accurately predicts the AAA subtype that is more likely to rupture was successfully developed.

CONCLUSION

We identified 38 DEMGs that may be involved in AAA. This gene cluster is involved in regulating the maximum vessel diameter, degree of immunoinflammatory infiltration, and strength of the local vessel wall in AAA. The prognostic model we developed can accurately identify the AAA subtypes that tend to rupture.

摘要

背景

腹主动脉瘤(rAAA)破裂是老年人的致命事件。血压升高和血管壁强度减弱是导致这种灾难性事件的主要危险因素。本研究旨在探讨机械敏感基因的表达谱是否与表型和结果相关,从而作为 AAA 发展的生物标志物。

方法

本研究采用一般生物信息学方法和机器学习方法,结合 GEO 数据库中公开的六个人类数据集,鉴定与 AAA 发生发展相关的机械敏感基因。通过差异表达分析鉴定 AAA 中的差异表达机械敏感基因(DEMGs)。通过功能聚类、蛋白质-蛋白质相互作用(PPI)和加权基因共表达网络分析(WGCNA)探索基因的分子生物学功能。根据数据集(GSE98278、GSE205071 和 GSE165470),通过共识聚类分析、机器学习模型和统计分析验证了 DEMGs 对 AAA 直径和主动脉壁强度变化的影响。此外,还采用机器学习方法构建了识别 AAA 亚型的模型。

结果

38 个 DEMGs 聚类在调节“平滑肌细胞生物学”和“细胞或组织连接”的途径中。通过分析 GSE205071 和 GSE165470 数据集,发现 DEMGs 对动脉瘤直径和血管壁强度的差异有反应。因此,在合并的数据集,我们正式创建了 AAA 的亚组,并发现了亚组之间免疫特征的差异。最后,成功开发了一种能够准确预测更易破裂的 AAA 亚型的模型。

结论

我们鉴定了 38 个可能参与 AAA 的 DEMGs。该基因簇参与调节 AAA 中最大血管直径、免疫浸润程度和局部血管壁强度。我们开发的预后模型可以准确识别更易破裂的 AAA 亚型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a35/10857568/77bfecdb5235/pone.0296729.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索