Wang Yaozu, Yang Huicong, Xu Jipeng, Tang Pei, Wei Qian, Hu Tianzhao, Gao Xuning, Guo Zhenqiang, Fang Ruopian, Hu Guangjian, Bai Shuo, Li Feng
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China.
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
J Am Chem Soc. 2024 Mar 20;146(11):7332-7340. doi: 10.1021/jacs.3c11952. Epub 2024 Feb 9.
The unstable electrode-electrolyte interface and the narrow electrochemical window of normal electrolytes hinder the potential application of high-voltage sodium metal batteries. These problems are actually related to the solvation structure of the electrolyte, which is determined by the competition between cations coordinated with anions or solvent molecules. Herein, we design an electrolyte incorporating ethyl (2,2,2-trifluoroethyl) carbonate and fluoroethylene carbonate, which facilitates a pronounced level of cation-anion coordination within the solvation sheath by enthalpy changes to reduce the overall coordination of cation-solvents and increase sensitivity to salt concentration. Such an electrolyte regulated by competitive coordination leads to highly reversible sodium plating/stripping with extended cycle life and a high Coulombic efficiency of 98.0%, which is the highest reported so far in Na||Cu cells with ester-based electrolytes. Moreover, 4.5 V high-voltage Na||NaV(PO)F cells exhibit a high rate capability up to 20 C and an impressive cycling stability with an 87.1% capacity retention after 250 cycles with limited Na. The proposed strategy of solvation structure modification by regulating the competitive coordination of the cation provides a new direction to achieve stable sodium metal batteries with high energy density and can be further extended to other battery systems by controlling enthalpy changes of the solvation structure.
不稳定的电极 - 电解质界面以及普通电解质狭窄的电化学窗口阻碍了高压钠金属电池的潜在应用。这些问题实际上与电解质的溶剂化结构有关,而溶剂化结构由阳离子与阴离子或溶剂分子配位之间的竞争所决定。在此,我们设计了一种包含碳酸乙基(2,2,2 - 三氟乙基)酯和氟代碳酸乙烯酯的电解质,通过焓变促进溶剂化鞘层内显著水平的阳离子 - 阴离子配位,以减少阳离子 - 溶剂的整体配位并提高对盐浓度的敏感性。这种由竞争配位调节的电解质导致高度可逆的钠电镀/剥离,具有延长的循环寿命和98.0%的高库仑效率,这是迄今为止在使用酯基电解质的Na||Cu电池中报道的最高值。此外,4.5 V的高压Na||NaV(PO)F电池展现出高达20 C的高倍率性能以及令人印象深刻的循环稳定性,在有限的钠条件下经过250次循环后容量保持率为87.1%。通过调节阳离子的竞争配位来修饰溶剂化结构的所提出策略为实现具有高能量密度的稳定钠金属电池提供了一个新方向,并且可以通过控制溶剂化结构的焓变进一步扩展到其他电池系统。