Haugerud Ivar Svalheim, Jaiswal Pranay, Weber Christoph A
Faculty of Mathematics, Natural Sciences, and Materials Engineering: Institute of Physics, University of Augsburg, Universitätsstraße 1, Augsburg 86159, Germany.
J Phys Chem B. 2024 Feb 22;128(7):1724-1736. doi: 10.1021/acs.jpcb.3c05824. Epub 2024 Feb 9.
Recent experimental studies suggest that wet-dry cycles and coexisting phases can each strongly alter chemical processes. The mechanisms of why and to what degree chemical processes are altered when subjected to evaporation and condensation are unclear. To close this gap, we developed a theoretical framework for nondilute chemical reactions subject to nonequilibrium conditions of evaporation and condensation. We find that such conditions can change the half-time of the product's yield by more than an order of magnitude, depending on the substrate-solvent interaction. We show that the cycle frequency strongly affects the chemical turnover when the system is maintained out of equilibrium by wet-dry cycles. There exists a resonance behavior in the cycle frequency where the turnover is maximal. This resonance behavior enables wet-dry cycles to select specific chemical reactions, suggesting a potential mechanism for chemical evolution in prebiotic soups at early Earth.
最近的实验研究表明,干湿循环和共存相均可强烈改变化学过程。当受到蒸发和冷凝作用时,化学过程为何以及在何种程度上发生改变的机制尚不清楚。为了填补这一空白,我们针对非平衡蒸发和冷凝条件下的非稀释化学反应建立了一个理论框架。我们发现,根据底物 - 溶剂相互作用的不同,这些条件可使产物产率的半衰期改变超过一个数量级。我们表明,当通过干湿循环使系统保持非平衡状态时,循环频率会强烈影响化学周转。在循环频率上存在一种共振行为,此时周转达到最大值。这种共振行为使干湿循环能够选择特定的化学反应,这为早期地球原始汤中的化学进化提供了一种潜在机制。