Provincial key laboratory for alpine grassland conservation and utilization on Qinghai-Tibetan Plateau, Institute of Qinghai-Tibetan Plateau Research, Southwest Minzu University, Chengdu 610041, China.
Provincial key laboratory for alpine grassland conservation and utilization on Qinghai-Tibetan Plateau, Institute of Qinghai-Tibetan Plateau Research, Southwest Minzu University, Chengdu 610041, China.
Sci Total Environ. 2024 Apr 1;919:170648. doi: 10.1016/j.scitotenv.2024.170648. Epub 2024 Feb 7.
Soil asymbiotic nitrogen (N) fixation provides a critical N source to support plant growth in alpine grasslands, and precipitation change is expected to lead to shifts in soil asymbiotic N fixation. However, large gaps remain in understanding the response of soil asymbiotic N fixation to precipitation gradients. Here we simulated five precipitation gradients (10 % (0.1P), 50 % (0.5P), 70 % (0.7P), 100 % (1.0P) and 150 % (1.5P) of the natural precipitation) in an alpine grassland of Qinghai-Tibetan Plateau and examined the soil nitrogenase activity and N fixation rate for each gradient. Quantitative PCR and high-throughput sequencing were used to measure the abundance and community composition of the soil nifH DNA (total diazotrophs) and nifH RNA reverse transcription (active diazotrophs) gene. Our results showed that the soil diazotrophic abundance, diversity and nifH gene expression rate peaked under the 0.5P. Soil nitrogenase activity and N fixation rate varied in the range 0.032-0.073 nmol·CH·g·h and 0.008-0.022 nmol·N·g·h respectively, being highest under the 0.5P. The 50 % precipitation reduction enhanced the gene expression rates of Azospirillum and Halorhodospira which were likely responsible for the high N fixation potential. The 0.5P treatment also possessed a larger and more complex active diazotrophic network than the other treatments, which facilitated the resistance of diazotrophic community to environmental stress and thus maintained a high N fixation potential. The active diazotrophic abundance had the largest positive effect on soil N fixation, while nitrate nitrogen had the largest negative effect. Together, our study suggested that appropriate precipitation reduction can enhance soil N fixation through promoting the abundance of the soil active diazotrophs and decreasing soil nitrate nitrogen, and soil active diazotrophs and nitrate nitrogen should be considered in predicting soil N inputs in the alpine grassland of Qinghai-Tibetan Plateau under precipitation change.
土壤非共生固氮为高寒草地植物生长提供了重要的氮源,降水变化预计会导致土壤非共生固氮的变化。然而,人们对于土壤非共生固氮对降水梯度的响应仍存在较大认识差距。本研究在青藏高原高寒草地设置了五个降水梯度(自然降水的 10%(0.1P)、50%(0.5P)、70%(0.7P)、100%(1.0P)和 150%(1.5P)),并对每个梯度的土壤固氮酶活性和固氮速率进行了检测。定量 PCR 和高通量测序用于测量土壤 nifH DNA(总固氮菌)和 nifH RNA 反转录(活性固氮菌)基因的丰度和群落组成。结果表明,在 0.5P 条件下,土壤固氮菌的丰度、多样性和 nifH 基因表达率最高。土壤固氮酶活性和固氮速率分别在 0.032-0.073 nmol·CH·g·h 和 0.008-0.022 nmol·N·g·h 之间变化,在 0.5P 条件下最高。降水减少 50%会增强 Azospirillum 和 Halorhodospira 的基因表达率,这可能是高固氮潜力的原因。0.5P 处理还具有比其他处理更大、更复杂的活性固氮菌网络,这有利于固氮菌群落对环境胁迫的抵抗力,从而维持高固氮潜力。活性固氮菌丰度对土壤固氮的正向影响最大,而硝酸盐氮的负向影响最大。综上所述,适当的降水减少可以通过促进土壤活性固氮菌的丰度和降低土壤硝酸盐氮来增强土壤固氮,在预测青藏高原高寒草地降水变化下的土壤氮输入时,应考虑土壤活性固氮菌和硝酸盐氮。