Suppr超能文献

一种用于毫米波信号传感阵列天线的、避免来自雷达罩损耗的超材料表面。

A Metamaterial Surface Avoiding Loss from the Radome for a Millimeter-Wave Signal-Sensing Array Antenna.

作者信息

Moon Inyeol, Kim Woogon, Seo Yejune, Kahng Sungtek

机构信息

Department of Information & Telecommunication Engineering, Incheon National University, Incheon 22012, Republic of Korea.

Global R&D Center, NISSHA Korea, Inc., 7F, 26, Hwangsaeul-ro 312beon-gil, Bundang-gu, Seongnam-si 13591, Gyeonggi-do, Republic of Korea.

出版信息

Sensors (Basel). 2024 Feb 5;24(3):0. doi: 10.3390/s24031018.

Abstract

Radar systems are a type of sensor that detects radio signals reflected from objects located a long distance from transmitters. For covering a longer range and a higher resolution in the operation of a radar, a high-frequency band and an array antenna are measures to take. Given a limited size to the antenna aperture in the front end of the radar, the choice of a millimeter-wave band leads to a denser layout for the array antenna and a higher antenna gain. Millimeter-wave signals tend to become attenuated faster by a larger loss of the covering material like the radome, implying this disadvantage offsets the advantage of high antenna directivity, compared to the C-band and X-band ones. As the radome is essential to the radar system to protect the array antenna from rain and dust, a metamaterial surface in the layer is suggested to meet multiple objectives. Firstly, the proposed electromagnetic structure is the protection layer for the source of radiation. Secondly, the metasurface does not disturb the millimeter-wave signal and makes its way through the cover layer to the air. This electromagnetically transparent surface transforms the phase distribution of the incident wave into the equal phase in the transmitted wave, resulting in an increased antenna gain. This is fabricated and assembled with the array antenna held in a 3D-printed jig with harnessing accessories. It is examined in view of S as the transfer coefficient between two ports of the VNA, having the antenna alone and with the metasurface. Additionally, the far-field test comes next to check the validity of the suggested structure and design. The bench test shows around a 7 dB increase in the transfer coefficient, and the anechoic chamber field test gives about a 5 dB improvement in antenna gain for a 24-band GHz array antenna.

摘要

雷达系统是一种传感器,可检测从距离发射机很远的物体反射回来的无线电信号。为了在雷达运行中覆盖更远的范围和实现更高的分辨率,采用高频波段和阵列天线是可行的措施。鉴于雷达前端天线孔径尺寸有限,选择毫米波频段会使阵列天线的布局更密集且天线增益更高。毫米波信号往往会因诸如天线罩等覆盖材料的更大损耗而更快衰减,这意味着与C波段和X波段相比,这一缺点抵消了高天线方向性的优势。由于天线罩对于雷达系统保护阵列天线免受雨水和灰尘影响至关重要,因此建议在该层使用超材料表面以实现多个目标。首先,所提出的电磁结构是辐射源的保护层。其次,超表面不会干扰毫米波信号,并使其穿过覆盖层进入空气。这种电磁透明表面将入射波的相位分布转换为透射波中的等相位,从而提高天线增益。它是与阵列天线一起制造并组装在带有线束附件的3D打印夹具中。针对作为矢量网络分析仪(VNA)两个端口之间传输系数的S进行了检查,分别测试了单独的天线以及带有超表面的天线。此外,接下来进行远场测试以检查所建议结构和设计的有效性。台架测试表明传输系数提高了约7dB,对于24频段GHz阵列天线,在消声室进行的场测试使天线增益提高了约5dB。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31fe/11154495/bd6873cd4a39/sensors-24-01018-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验