Suppr超能文献

基于响应面法的生物砂砖建模的机器学习优化

Machine learning optimization of bio-sandcrete brick modelling using response surface methodology.

作者信息

Ganasen Nakkeeran, Krishnaraj L, Onyelowe Kennedy C, Stephen Liberty U

机构信息

Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India, 603203.

Department of Civil Engineering, Michael Okpara University of Agriculture, Umudike, Nigeria.

出版信息

Sci Rep. 2024 Feb 10;14(1):3438. doi: 10.1038/s41598-024-54029-5.

Abstract

In this study, raw grinded groundnut shell (RGGNS) was used as a fine aggregate in the brick industry to reuse agricultural waste in building materials. In this study, an experimental approach was used to examine a new cement brick with raw groundnut shells integrated with compressive strength, water absorption and dry density optimization utilizing response surface methodology (RSM). The raw ground-nut shell content improved the fine aggregate performance of the 40%, 50%, and 60% samples. The 28-day high compressive strength with the raw ground-nut shell was 6.1 N/mm maximum, as needed by the technical standard. Samples made from 40%, 50%, and 60% raw groundnut shells yielded densities of 1.7, 2.2, and 1.9 kg/cm for groundnut shell (GNS) brick, respectively. A product's mechanical properties meet the IS code standard's minimum requirements. RSM was then utilized to develop a model for the addition of raw groundnut shell to concrete. R-square and Adeq precision values indicated that the results are highly significant, and equations for predicting compressive strength, water absorption, and dry density have been developed. In addition, optimization was performed on the RSM findings to determine the efficiency optimization of the model. Following the optimization results, experiments were conducted to determine the applicability of the optimized model.

摘要

在本研究中,将生磨花生壳(RGGNS)用作制砖行业的细集料,以实现农业废弃物在建筑材料中的再利用。本研究采用实验方法,利用响应面法(RSM)对含有生花生壳的新型水泥砖进行抗压强度、吸水率和干密度优化研究。生花生壳含量改善了40%、50%和60%样品的细集料性能。按照技术标准要求,含生花生壳的样品28天抗压强度最高为6.1N/mm²。由40%、50%和60%生花生壳制成的样品,花生壳(GNS)砖的密度分别为1.7、2.2和1.9kg/cm³。产品的力学性能满足印度标准规范的最低要求。然后利用响应面法建立了在混凝土中添加生花生壳的模型。决定系数(R²)和充足精度值表明结果非常显著,并建立了预测抗压强度、吸水率和干密度的方程。此外,对响应面法的结果进行了优化,以确定模型的效率优化。根据优化结果,进行实验以确定优化模型的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4638/10858954/69a201aa06e6/41598_2024_54029_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验