Suppr超能文献

咳嗽产生飞沫中病毒载量的计算机模拟鉴定——CFPD-HCD-EWF的无缝综合分析

In silico identification of viral loads in cough-generated droplets - Seamless integrated analysis of CFPD-HCD-EWF.

作者信息

Li Hanyu, Khoa Nguyen Dang, Kuga Kazuki, Ito Kazuhide

机构信息

Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan.

Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Japan.

出版信息

Comput Methods Programs Biomed. 2024 Apr;246:108073. doi: 10.1016/j.cmpb.2024.108073. Epub 2024 Feb 8.

Abstract

BACKGROUND AND OBJECTIVE

Respiratory diseases caused by respiratory viruses have significantly threatened public health worldwide. This study presents a comprehensive approach to predict viral dynamics and the generation of stripped droplets within the mucus layer of the respiratory tract during coughing using a larynx-trachea-bifurcation (LTB) model.

METHODS

This study integrates computational fluid-particle dynamics (CFPD), host-cell dynamics (HCD), and the Eulerian wall film (EWF) model to propose a potential means for seamless integrated analysis. The verified CFPD-HCD coupling model based on a 3D-shell model was used to characterize the severe acute respiratory syndrome, coronavirus 2 (SARS-CoV-2) dynamics in the LTB mucus layer, whereas the EWF model was employed to account for the interfacial fluid to explore the generation mechanism and trace the origin site of droplets exhaled during a coughing event of an infected host.

RESULTS

The results obtained using CFPD delineated the preferential deposition sites for droplets in the laryngeal and tracheal regions. Thus, the analysis of the HCD model showed that the viral load increased rapidly in the laryngeal region during the peak of infection, whereas there was a growth delay in the tracheal region (up to day 8 after infection). After two weeks of infection, the high viral load gradually migrated towards the glottic region. Interestingly, the EWF model demonstrated a high concentration of exhaled droplets originating from the larynx. The coupling technique indicated a concurrent high viral load in the mucus layer and site of origin of the exhaled droplets.

CONCLUSIONS

This interdisciplinary research underscores the seamless analysis from initial exposure to virus-laden droplets, the dynamics of viral infection in the LTB mucus layer, and the re-emission from the coughing activities of an infected host. Our efforts aimed to address the complex challenges at the intersection of viral dynamics and respiratory health, which can contribute to a more detailed understanding and targeted prevention of respiratory diseases.

摘要

背景与目的

由呼吸道病毒引起的呼吸道疾病已对全球公众健康构成重大威胁。本研究提出了一种综合方法,利用喉-气管-分叉(LTB)模型预测咳嗽期间呼吸道黏液层内病毒动态以及剥离液滴的产生。

方法

本研究整合了计算流体-颗粒动力学(CFPD)、宿主细胞动力学(HCD)和欧拉壁膜(EWF)模型,以提出一种进行无缝综合分析的潜在方法。基于三维壳模型验证的CFPD-HCD耦合模型用于表征严重急性呼吸综合征冠状病毒2(SARS-CoV-2)在LTB黏液层中的动态,而EWF模型则用于考虑界面流体,以探索液滴的产生机制并追踪受感染宿主咳嗽事件期间呼出液滴的起源部位。

结果

使用CFPD获得的结果描绘了喉和气管区域液滴的优先沉积部位。因此,HCD模型分析表明,在感染高峰期喉区域的病毒载量迅速增加,而气管区域存在生长延迟(感染后长达第8天)。感染两周后,高病毒载量逐渐向声门区域迁移。有趣的是,EWF模型表明呼出液滴高度集中于喉部。耦合技术表明黏液层中病毒载量高且呼出液滴的起源部位相同。

结论

这项跨学科研究强调了从最初接触含病毒液滴、LTB黏液层中病毒感染动态到受感染宿主咳嗽活动再排放的无缝分析。我们的努力旨在应对病毒动态与呼吸健康交叉领域的复杂挑战,这有助于更详细地了解和针对性预防呼吸道疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验