Suppr超能文献

使用更多遗传标记进行高效群体表征可提高虹鳟(Oncorhynchus mykiss)遗传种群识别基线的性能。

Efficient population representation with more genetic markers increases performance of a steelhead (Oncorhynchus mykiss) genetic stock identification baseline.

作者信息

Hargrove John S, Delomas Thomas A, Powell John H, Hess Jon E, Narum Shawn R, Campbell Matthew R

机构信息

Pacific States Marine Fisheries Commission Eagle Idaho USA.

U.S. Department of Agriculture Agricultural Research Service National Cold Water Marine Aquaculture Center Kingston Rhode Island USA.

出版信息

Evol Appl. 2023 Dec 26;17(2):e13610. doi: 10.1111/eva.13610. eCollection 2024 Feb.

Abstract

Genetic stock identification (GSI) is an important fisheries management tool to identify the origin of fish harvested in mixed stock fisheries. Periodic updates of genetic baselines can improve performance via the addition of unsampled or under-sampled populations and the inclusion of more informative markers. We used a combination of baselines to evaluate how population representation, marker number, and marker type affected the performance and accuracy of genetic stock assignments (self-assignment, bias, and holdout group tests) for steelhead () in the Snake River basin. First, we compared the performance of an existing genetic baseline with a newly developed one which had a reduced number of individuals from more populations using the same set of markers. Self-assignment rates were significantly higher ( < 0.001; +5.4%) for the older, larger baseline, bias did not differ significantly between the two, but there was a significant improvement in performance for the new baseline in holdout results ( < 0.001; mean increase of 25.0%). Second, we compared the performance of the new baseline with increased numbers of genetic markers (~2x increase of single-nucleotide polymorphisms; SNPs) for the same set of baseline individuals. In this comparison, results produced significantly higher rates of self-assignment ( < 0.001; +9.7%) but neither bias nor leave-one-out were significantly affected. Third, we compared 334 SNPs versus opportunistically discovered microhaplotypes from the same amplicons for the new baseline, and showed the latter produced significantly higher rates of self-assignment ( < 0.01; +2.6%), similar bias, but slightly lower holdout performance (-0.1%). Combined, we show the performance of genetic baselines can be improved via representative and efficient sampling, that increased marker number consistently improved performance over the original baseline, and that opportunistic discovery of microhaplotypes can lead to small improvements in GSI performance.

摘要

遗传种群鉴定(GSI)是一种重要的渔业管理工具,用于确定混合种群渔业中捕捞鱼类的来源。通过添加未采样或采样不足的种群以及纳入更多信息丰富的标记,定期更新遗传基线可以提高性能。我们使用了多种基线组合来评估种群代表性、标记数量和标记类型如何影响蛇河流域虹鳟()遗传种群分配(自我分配、偏差和留一法检验)的性能和准确性。首先,我们使用同一组标记,将现有的遗传基线与新开发的基线进行了比较,新基线来自更多种群的个体数量有所减少。较旧、较大的基线的自我分配率显著更高(<0.001;+5.4%),两者之间的偏差没有显著差异,但新基线在留一法结果中的性能有显著改善(<0.001;平均提高25.0%)。其次,我们将新基线与同一组基线个体增加数量的遗传标记(单核苷酸多态性;SNP增加约2倍)的性能进行了比较。在这次比较中,结果产生了显著更高的自我分配率(<0.001;+9.7%),但偏差和留一法均未受到显著影响。第三,我们将334个SNP与新基线中从相同扩增子中机会性发现的微单倍型进行了比较,结果表明后者产生了显著更高的自我分配率(<0.01;+2.6%),偏差相似,但留一法性能略低(-0.1%)。综合来看,我们表明通过具有代表性和高效的采样可以提高遗传基线的性能,增加标记数量始终比原始基线能更好地提高性能,并且机会性发现微单倍型可以使GSI性能有小幅提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0283/10853585/4523e3fe59a1/EVA-17-e13610-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验