Naghavi Morteza, Yankelevitz David, Reeves Anthony P, Budoff Matthew J, Li Dong, Atlas Kyle C, Zhang Chenyu, Atlas Thomas L, Lirette Seth, Wasserthal Jakob, Henschke Claudia, Defilippi Christopher, Heckbert Susan R, Greenland Philip
HeartLung.AI, 2450 Holcombe, Houston, TX, 77021.
Mount Sinai Hospital, 1468 Madison Ave, New York, NY 10029.
medRxiv. 2024 Jan 24:2024.01.22.24301384. doi: 10.1101/2024.01.22.24301384.
BACKGROUND: Coronary artery calcium (CAC) scans contain actionable information beyond CAC scores that is not currently reported. METHODS: We have applied artificial intelligence-enabled automated cardiac chambers volumetry to CAC scans (AI-CAC), taking on average 21 seconds per CAC scan, to 5535 asymptomatic individuals (52.2% women, ages 45-84) that were previously obtained for CAC scoring in the baseline examination (2000-2002) of the Multi-Ethnic Study of Atherosclerosis (MESA). We used the 5-year outcomes data for incident atrial fibrillation (AF) and compared the time-dependent AUC of AI-CAC LA volume with known predictors of AF, the CHARGE-AF Risk Score and NT-proBNP (BNP). The mean follow-up time to an AF event was 2.9±1.4 years. RESULTS: At 1,2,3,4, and 5 years follow-up 36, 77, 123, 182, and 236 cases of AF were identified, respectively. The AUC for AI-CAC LA volume was significantly higher than CHARGE-AF or BNP at year 1 (0.836, 0.742, 0.742), year 2 (0.842, 0.807,0.772), and year 3 (0.811, 0.785, 0.745) (p<0.02), but similar for year 4 (0.785, 0.769, 0.725) and year 5 (0.781, 0.767, 0.734) respectively (p>0.05). AI-CAC LA volume significantly improved the continuous Net Reclassification Index for prediction of AF over years 1-5 when added to CAC score (0.74, 0.49, 0.53, 0.39, 0.44), CHARGE-AF Risk Score (0.60, 0.28, 0.32, 0.19, 0.24), and BNP (0.68, 0.44, 0.42, 0.30, 0.37) respectively (p<0.01). CONCLUSION: AI-CAC LA volume enabled prediction of AF as early as one year and significantly improved on risk classification of CHARGE-AF Risk Score and BNP.
背景:冠状动脉钙化(CAC)扫描包含目前未报告的超出CAC评分的可操作信息。 方法:我们将基于人工智能的自动心腔容积测量技术应用于CAC扫描(AI-CAC),每次CAC扫描平均耗时21秒,对5535名无症状个体(52.2%为女性,年龄45 - 84岁)进行了检测,这些个体在动脉粥样硬化多族裔研究(MESA)的基线检查(2000 - 2002年)中曾进行过CAC评分。我们使用了房颤(AF)发病的5年结局数据,并将AI-CAC左心房容积的时间依赖性曲线下面积(AUC)与AF的已知预测指标——CHARGE-AF风险评分和N末端B型利钠肽原(NT-proBNP)进行了比较。AF事件的平均随访时间为2.9±1.4年。 结果:在1年、2年、3年、4年和5年的随访中,分别确诊了36例、77例、123例、182例和236例AF。在第1年(0.836、0.742、0.742)、第2年(0.842、0.807、0.772)和第3年(0.811、0.785、0.745)时,AI-CAC左心房容积的AUC显著高于CHARGE-AF或BNP(p<0.02),但在第4年(0.785、0.769、0.725)和第5年(0.781、0.767、0.734)时分别相似(p>0.05)。当将AI-CAC左心房容积添加到CAC评分(0.74、0.49、0.53、0.39、0.44)、CHARGE-AF风险评分(0.60、0.28、0.32、0.19、0.24)和BNP(0.68、0.44、0.42、0.30、0.37)中时,AI-CAC左心房容积在1 - 5年期间显著改善了AF预测的连续净重新分类指数(p<0.01)。 结论:AI-CAC左心房容积能够早在1年内预测AF,并显著改善CHARGE-AF风险评分和BNP的风险分类。
Circ Cardiovasc Imaging. 2015-12