Suppr超能文献

基于张量/矩阵联合分解的多模态脑磁图和功能磁共振成像数据融合研究青少年的时空脑动力学。

Learning Spatiotemporal Brain Dynamics in Adolescents via Multimodal MEG and fMRI Data Fusion Using Joint Tensor/Matrix Decomposition.

出版信息

IEEE Trans Biomed Eng. 2024 Jul;71(7):2189-2200. doi: 10.1109/TBME.2024.3364704. Epub 2024 Jun 19.

Abstract

OBJECTIVE

Brain function is understood to be regulated by complex spatiotemporal dynamics, and can be characterized by a combination of observed brain response patterns in time and space. Magnetoencephalography (MEG), with its high temporal resolution, and functional magnetic resonance imaging (fMRI), with its high spatial resolution, are complementary imaging techniques with great potential to reveal information about spatiotemporal brain dynamics. Hence, the complementary nature of these imaging techniques holds much promise to study brain function in time and space, especially when the two data types are allowed to fully interact.

METHODS

We employed coupled tensor/matrix factorization (CMTF) to extract joint latent components in the form of unique spatiotemporal brain patterns that can be used to study brain development and function on a millisecond scale.

RESULTS

Using the CMTF model, we extracted distinct brain patterns that revealed fine-grained spatiotemporal brain dynamics and typical sensory processing pathways informative of high-level cognitive functions in healthy adolescents. The components extracted from multimodal tensor fusion possessed better discriminative ability between high- and low-performance subjects than single-modality data-driven models.

CONCLUSION

Multimodal tensor fusion successfully identified spatiotemporal brain dynamics of brain function and produced unique components with high discriminatory power.

SIGNIFICANCE

The CMTF model is a promising tool for high-order, multimodal data fusion that exploits the functional resolution of MEG and fMRI, and provides a comprehensive picture of the developing brain in time and space.

摘要

目的

大脑功能被认为是由复杂的时空动力学调节的,可以通过在时间和空间上观察到的大脑反应模式的组合来描述。脑磁图(MEG)具有高时间分辨率,功能磁共振成像(fMRI)具有高空间分辨率,这两种成像技术是互补的,具有揭示时空脑动力学信息的巨大潜力。因此,这些成像技术的互补性有望在时间和空间上研究大脑功能,特别是当两种数据类型能够充分相互作用时。

方法

我们采用耦合张量/矩阵分解(CMTF)方法,以独特的时空脑模式的形式提取联合潜在成分,可用于在毫秒级尺度上研究大脑发育和功能。

结果

使用 CMTF 模型,我们提取了独特的脑模式,揭示了精细的时空脑动力学和典型的感觉处理途径,这些途径为健康青少年的高级认知功能提供了信息。多模态张量融合提取的成分在区分高、低表现受试者方面比单模态数据驱动模型具有更好的判别能力。

结论

多模态张量融合成功地识别了大脑功能的时空脑动力学,并产生了具有高判别力的独特成分。

意义

CMTF 模型是一种很有前途的高阶多模态数据融合工具,它利用了 MEG 和 fMRI 的功能分辨率,提供了大脑在时空上的全面发展图景。

相似文献

1
Learning Spatiotemporal Brain Dynamics in Adolescents via Multimodal MEG and fMRI Data Fusion Using Joint Tensor/Matrix Decomposition.
IEEE Trans Biomed Eng. 2024 Jul;71(7):2189-2200. doi: 10.1109/TBME.2024.3364704. Epub 2024 Jun 19.
3
Enhancing Preoperative Diagnosis of Subscapular Muscle Injuries with Shoulder MRI-based Multimodal Radiomics.
Acad Radiol. 2025 Feb;32(2):907-915. doi: 10.1016/j.acra.2024.09.049. Epub 2024 Oct 5.
5
Refined signal space separation methods for on-scalp MEG systems.
Phys Med Biol. 2025 Jun 30;70(13). doi: 10.1088/1361-6560/ade6ba.
7
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.
10
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.
Cochrane Database Syst Rev. 2022 Mar 2;3(3):CD013387. doi: 10.1002/14651858.CD013387.pub2.

引用本文的文献

2
TGNet: tensor-based graph convolutional networks for multimodal brain network analysis.
BioData Min. 2024 Dec 6;17(1):55. doi: 10.1186/s13040-024-00409-6.
3
Independent Vector Analysis for Feature Extraction in Motor Imagery Classification.
Sensors (Basel). 2024 Aug 22;24(16):5428. doi: 10.3390/s24165428.

本文引用的文献

1
Multi-Subject Analysis for Brain Developmental Patterns Discovery via Tensor Decomposition of MEG Data.
Neuroinformatics. 2023 Jan;21(1):115-141. doi: 10.1007/s12021-022-09599-y. Epub 2022 Aug 24.
2
Ballistocardiogram suppression in concurrent EEG-MRI by dynamic modeling of heartbeats.
Hum Brain Mapp. 2022 Oct 1;43(14):4444-4457. doi: 10.1002/hbm.25965. Epub 2022 Jun 13.
4
Artifact Reduction in Simultaneous EEG-fMRI: A Systematic Review of Methods and Contemporary Usage.
Front Neurol. 2021 Mar 11;12:622719. doi: 10.3389/fneur.2021.622719. eCollection 2021.
5
The Developmental Chronnecto-Genomics (Dev-CoG) study: A multimodal study on the developing brain.
Neuroimage. 2021 Jan 15;225:117438. doi: 10.1016/j.neuroimage.2020.117438. Epub 2020 Oct 8.
6
Multidataset Independent Subspace Analysis With Application to Multimodal Fusion.
IEEE Trans Image Process. 2021;30:588-602. doi: 10.1109/TIP.2020.3028452. Epub 2020 Nov 25.
7
Extraction of Common Task Features in EEG-fMRI Data Using Coupled Tensor-Tensor Decomposition.
Brain Topogr. 2020 Sep;33(5):636-650. doi: 10.1007/s10548-020-00787-0. Epub 2020 Jul 29.
8
A M/EEG-fMRI Fusion Primer: Resolving Human Brain Responses in Space and Time.
Neuron. 2020 Sep 9;107(5):772-781. doi: 10.1016/j.neuron.2020.07.001. Epub 2020 Jul 27.
9
Discovering dynamic task-modulated functional networks with specific spectral modes using MEG.
Neuroimage. 2020 Sep;218:116924. doi: 10.1016/j.neuroimage.2020.116924. Epub 2020 May 20.
10
Coupled CP Decomposition of Simultaneous MEG-EEG Signals for Differentiating Oscillators During Photic Driving.
Front Neurosci. 2020 Apr 9;14:261. doi: 10.3389/fnins.2020.00261. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验